Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Epidemiol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39290087

RESUMO

Understanding whether influenza vaccine promotion strategies produce community-wide indirect effects is important for establishing vaccine coverage targets and optimizing vaccine delivery. Empirical epidemiologic studies and mathematical models have been used to estimate indirect effects of vaccines but rarely for the same estimand in the same dataset. Using these approaches together could be a powerful tool for triangulation in infectious disease epidemiology because each approach is subject to distinct sources of bias. We triangulated evidence about indirect effects from a school-located influenza vaccination program using two approaches: a difference-in-difference (DID) analysis, and an age-structured, deterministic, compartmental model. The estimated indirect effect was substantially lower in the mathematical model than in the DID analysis (2.1% (95% Bayesian credible intervals 0.4 - 4.4%) vs. 22.3% (95% CI 7.6% - 37.1%)). To explore reasons for differing estimates, we used sensitivity analyses and probabilistic bias analyses. When we constrained model parameters such that projections matched the DID analysis, results only aligned with the DID analysis with substantially lower pre-existing immunity among school-age children and older adults. Conversely, DID estimates corrected for potential bias only aligned with mathematical model estimates under differential outcome misclassification. We discuss how triangulation using empirical and mathematical modelling approaches could strengthen future studies.

2.
Ann Allergy Asthma Immunol ; 130(6): 699-712, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36706910

RESUMO

Rituximab is a chimeric anti-CD20 monoclonal antibody that targets CD20-expressing B lymphocytes, has a well-defined efficacy and safety profile, and is broadly used to treat a wide array of diseases. In this review, we cover the mechanism of action of rituximab and focus on hypogammaglobulinemia and late-onset neutropenia-2 immune effects secondary to rituximab-and subsequent infection. We review risk factors and highlight key considerations for immunologic monitoring and clinical management of rituximab-induced secondary immune deficiencies. In patients treated with rituximab, monitoring for hypogammaglobulinemia and infections may help to identify the subset of patients at high risk for developing poor B cell reconstitution, subsequent infections, and adverse complications. These patients may benefit from early interventions such as vaccination, antibacterial prophylaxis, and immunoglobulin replacement therapy. Systematic evaluation of immunoglobulin levels and peripheral B cell counts by flow cytometry, both at baseline and periodically after therapy, is recommended for monitoring. In addition, in those patients with prolonged hypogammaglobulinemia and increased infections after rituximab use, immunologic evaluation for inborn errors of immunity may be warranted to further risk stratification, increase monitoring, and assist in therapeutic decision-making. As the immunologic effects of rituximab are further elucidated, personalized approaches to minimize the risk of adverse reactions while maximizing benefit will allow for improved care of patients with decreased morbidity and mortality.


Assuntos
Agamaglobulinemia , Antineoplásicos , Neutropenia , Humanos , Rituximab/efeitos adversos , Agamaglobulinemia/complicações , Antineoplásicos/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Neutropenia/tratamento farmacológico , Neutropenia/induzido quimicamente , Neutropenia/complicações
3.
Curr Allergy Asthma Rep ; 23(12): 665-673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047993

RESUMO

PURPOSE OF REVIEW: With increasing industrialization, exposure to ambient and wildfire air pollution is projected to increase, necessitating further research to elucidate the complex relationship between exposure and sinonasal disease. This review aims to summarize the role of ambient and wildfire air pollution in chronic rhinosinusitis (CRS) and olfactory dysfunction and provide a perspective on gaps in the literature. RECENT FINDINGS: Based on an emerging body of evidence, exposure to ambient air pollutants is correlated with the development of chronic rhinosinusitis in healthy individuals and increased symptom severity in CRS patients. Studies have also found a robust relationship between long-term exposure to ambient air pollutants and olfactory dysfunction. Ambient air pollution exposure is increasingly recognized to impact the development and sequelae of sinonasal pathophysiology. Given the rising number of wildfire events and worsening impacts of climate change, further study of the impact of wildfire-related air pollution is a crucial emerging field.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos do Olfato , Rinossinusite , Incêndios Florestais , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos
4.
Epidemiol Rev ; 44(1): 29-54, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35593400

RESUMO

In trials of infectious disease interventions, rare outcomes and unpredictable spatiotemporal variation can introduce bias, reduce statistical power, and prevent conclusive inferences. Spillover effects can complicate inference if individual randomization is used to gain efficiency. Ring trials are a type of cluster-randomized trial that may increase efficiency and minimize bias, particularly in emergency and elimination settings with strong clustering of infection. They can be used to evaluate ring interventions, which are delivered to individuals in proximity to or contact with index cases. We conducted a systematic review of ring trials, compare them with other trial designs for evaluating ring interventions, and describe strengths and weaknesses of each design. Of 849 articles and 322 protocols screened, we identified 26 ring trials, 15 cluster-randomized trials, 5 trials that randomized households or individuals within rings, and 1 individually randomized trial. The most common interventions were postexposure prophylaxis (n = 23) and focal mass drug administration and screening and treatment (n = 7). Ring trials require robust surveillance systems and contact tracing for directly transmitted diseases. For rare diseases with strong spatiotemporal clustering, they may have higher efficiency and internal validity than cluster-randomized designs, in part because they ensure that no clusters are excluded from analysis due to zero cluster incidence. Though more research is needed to compare them with other types of trials, ring trials hold promise as a design that can increase trial speed and efficiency while reducing bias.


Assuntos
Doenças Transmissíveis , Humanos , Doenças Transmissíveis/terapia
5.
Ecol Lett ; 24(4): 829-846, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33501751

RESUMO

Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.


Assuntos
Malária , Doenças Transmitidas por Vetores , Vetores de Doenças , Humanos
6.
PLoS Negl Trop Dis ; 18(9): e0012488, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283940

RESUMO

Mosquito vectors of pathogens (e.g., Aedes, Anopheles, and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change.

7.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712158

RESUMO

Japanese Encephalitis Virus (JEV) transmission in temperate Australia has underscored a critical need to characterise transmission pathways and identify probable hosts of infection within the country. This systematic review consolidates existing research on the vertebrate hosts of JEV that are known to exist in Australia. Specifically, we aim to identify probable species for JEV transmission, their potential role as either a spillover or maintenance host and identify critical knowledge gaps. Data were extracted from studies involving experimental infection, seroprevalence, and virus isolation and were available for 22 vertebrate species known to reside in Australia. A host competence score was calculated to assess the potential for a given species to infect JEV vectors and to quantity their possible role in JEV transmission. Based on the host competence score and ecology of each species, we find ardeid birds, feral pigs, and flying foxes have potential as maintenance hosts for JEV in the Australian context. We also note that brushtail possums and domestic pigs have potential as spillover hosts under certain outbreak conditions. However, evidence to confirm these roles in localized transmission or outbreaks is sparse, emphasizing the need for further targeted research. This review provides a foundation for future investigations into JEV transmission in Australia, advocating for enhanced surveillance and standardized research methodologies to better understand and mitigate the virus's impact.

8.
Head Neck ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488238

RESUMO

BACKGROUND: Experience with targeted neoadjuvant treatment for locoregionally advanced thyroid cancer is nascent. METHODS: Multicenter retrospective case series examining targeted neoadjuvant treatment for locoregionally advanced thyroid cancer. The primary outcome was change in surgical morbidity as measured by two metrics developed for use in clinical trials to characterize surgical complexity and morbidity. Secondary outcomes included percentage of patients proceeding to surgery and percentage receiving an R0/R1 resection. RESULTS: Seventeen patients with varied molecular alterations, pathologies, and treatment regimens were included. Mean surgical complexity scores decreased between time points for baseline and postneoadjuvant treatment, postneoadjuvant treatment and surgery, and between baseline and surgery. Eleven patients (64.7%) underwent surgical resection, with 10 (58.8%) receiving an R0/R1 resection. CONCLUSIONS: Neoadjuvant treatment of advanced thyroid cancer improves resectability and decreases the morbidity of required surgical procedures. However, treatment is not uniformly effective.

9.
Int Forum Allergy Rhinol ; 14(1): 110-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37325975

RESUMO

KEY POINTS: IL-5, CCL2, and CXCL8 in sinus mucous are higher in patients with AERD relative to aspirin-tolerant patients with CRS These mediators are pleiotropic, leading to widescale inflammatory processes contributing to AERD AERD is not only a T2 disease but heterogeneous: this may explain the refractory nature of AERD.


Assuntos
Asma Induzida por Aspirina , Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Aspirina/efeitos adversos , Doença Crônica
10.
Laryngoscope ; 134(7): 3415-3419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38264976

RESUMO

OBJECTIVES: Neoadjuvant targeted therapy has emerged as a promising treatment strategy for locally aggressive thyroid cancer. Its impact on tumor and adjacent tissues remains a nascent area of study. Here we report on a series of six subjects with locally advanced thyroid cancer and recurrent laryngeal nerve (RLN) paralysis who experienced recovery of RLN function with neoadjuvant treatment and describe the morphologic and electrophysiologic characteristics of these recovered nerves. METHODS: This is a multicenter retrospective review. Descriptive analysis was conducted to examine the following parameters for recovered nerves: (1) nerve morphology, characterized as Type A (involving epineurium only) versus Type B (extending beyond epineurium); (2) proximal stimulability (normal vs. abnormal vs. absent); and (3) surgical management (resection vs. preservation). RESULTS: Six subjects with unilateral VFP were identified. Median time to return of VF mobility was 3 months (range 2-13.5). All nerves (100%) were noted to have Type A morphology at surgery. Proximal stimulability was normal in four subjects (66.7%), abnormal in one (16.7%), and absent in one (16.7%). Nerves that had improvement of function through neoadjuvant therapy were able to be surgically preserved in five subjects (83.3%). CONCLUSIONS: This represents the first characterization of RLNs that have recovered function with neoadjuvant treatment of locally advanced thyroid cancer. Although much remains unknown, our findings indicate carcinomatous neural invasion is a reversible process and recovered nerves may demonstrate normal morphology and electrophysiologic activity. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:3415-3419, 2024.


Assuntos
Terapia Neoadjuvante , Recuperação de Função Fisiológica , Nervo Laríngeo Recorrente , Neoplasias da Glândula Tireoide , Paralisia das Pregas Vocais , Humanos , Estudos Retrospectivos , Pessoa de Meia-Idade , Feminino , Masculino , Nervo Laríngeo Recorrente/cirurgia , Nervo Laríngeo Recorrente/fisiopatologia , Paralisia das Pregas Vocais/cirurgia , Paralisia das Pregas Vocais/fisiopatologia , Paralisia das Pregas Vocais/terapia , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/fisiopatologia , Adulto , Tireoidectomia/métodos , Idoso , Resultado do Tratamento
11.
PLOS Glob Public Health ; 4(8): e0002224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093879

RESUMO

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions. Here we address key questions about SDM application, using schistosomiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through contact with the free-living infectious stage of Schistosoma spp. parasites released from freshwater snails, the parasite's obligate intermediate hosts. In this study, we compared snail SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and Boosted Regression Trees), geographic extents (national, regional, and state), types of presence data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata, B. straminea, and B. tenagophila). We used high-resolution (1km) climate, hydrology, land-use/land-cover (LULC), and soil property data to describe the snails' ecological niche and evaluated models on multiple criteria. Although all ML approaches produced comparable spatially cross-validated performance metrics, their suitability maps showed major qualitative differences that required validation based on local expert knowledge. Additionally, our findings revealed varying importance of LULC and bioclimatic variables for different snail species at different spatial scales. Finally, we found that models using publicly-available data predicted snail distribution with comparable AUC values to models using expert-collected data. This work serves as an instructional guide to SDM methods that can be applied to a range of vector-borne and zoonotic diseases. In addition, it advances our understanding of the relevant environment and bioclimatic determinants of schistosomiasis risk in Brazil.

12.
Nat Commun ; 15(1): 4838, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898012

RESUMO

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we used machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of forward-transmitting Biomphalaria hosts throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution-while accounting for non-linearities that are difficult to detect from local case studies-can help inform schistosomiasis control strategies.


Assuntos
Biomphalaria , Mudança Climática , Ecossistema , Schistosoma mansoni , Esquistossomose mansoni , Urbanização , Animais , Brasil , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , Esquistossomose mansoni/transmissão , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Caramujos/parasitologia , Caramujos/fisiologia , Humanos
13.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260310

RESUMO

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria snails, so controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we leveraged machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of competent Biomphalaria throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution - while accounting for non-linearities that are difficult to detect from local case studies - can help inform schistosomiasis control strategies.

14.
Environ Health Perspect ; 132(4): 47006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602833

RESUMO

BACKGROUND: Diarrheal disease is a leading cause of childhood morbidity and mortality globally. Household water, sanitation, and handwashing (WASH) interventions can reduce exposure to diarrhea-causing pathogens, but meteorological factors may impact their effectiveness. Information about effect heterogeneity under different weather conditions is critical to refining these targeted interventions. OBJECTIVES: We aimed to determine whether temperature and precipitation modified the effect of low-cost, point-of-use WASH interventions on child diarrhea. METHODS: We analyzed data from a trial in rural Bangladesh that compared child diarrhea prevalence between clusters (N=720) that were randomized to different WASH interventions between 2012 and 2016 (NCT01590095). We matched temperature and precipitation measurements to diarrhea outcomes (N=12,440 measurements, 6,921 children) by geographic coordinates and date. We estimated prevalence ratios (PRs) using generative additive models and targeted maximum likelihood estimation to assess the effectiveness of each WASH intervention under different weather conditions. RESULTS: Generally, WASH interventions most effectively prevented diarrhea during monsoon season, particularly following weeks with heavy rain or high temperatures. The PR for diarrhea in the WASH interventions group compared with the control group was 0.49 (95% CI: 0.35, 0.68) after 1 d of heavy rainfall, with a less-protective effect [PR=0.87 (95% CI: 0.60, 1.25)] when there were no days with heavy rainfall. Similarly, the PR for diarrhea in the WASH intervention group compared with the control group was 0.60 (95% CI: 0.48, 0.75) following above-median temperatures vs. 0.91 (95% CI: 0.61, 1.35) following below-median temperatures. The influence of precipitation and temperature varied by intervention type; for precipitation, the largest differences in effectiveness were for the sanitation and combined WASH interventions. DISCUSSION: WASH intervention effectiveness was strongly influenced by precipitation and temperature, and nearly all protective effects were observed during the rainy season. Future implementation of these interventions should consider local environmental conditions to maximize effectiveness, including targeted efforts to maintain latrines and promote community adoption ahead of monsoon seasons. https://doi.org/10.1289/EHP13807.


Assuntos
Saneamento , Água , Criança , Humanos , Bangladesh/epidemiologia , Diarreia/epidemiologia , Diarreia/prevenção & controle , Desinfecção das Mãos , Temperatura
15.
PLoS Negl Trop Dis ; 18(5): e0012157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739632

RESUMO

BACKGROUND: A number of studies have detected relationships between weather and diarrhea. Few have investigated associations with specific enteric pathogens. Understanding pathogen-specific relationships with weather is crucial to inform public health in low-resource settings that are especially vulnerable to climate change. OBJECTIVES: Our objectives were to identify weather and environmental risk factors associated with diarrhea and enteropathogen prevalence in young children in rural Bangladesh, a population with high diarrheal disease burden and vulnerability to weather shifts under climate change. METHODS: We matched temperature, precipitation, surface water, and humidity data to observational longitudinal data from a cluster-randomized trial that measured diarrhea and enteropathogen prevalence in children 6 months-5.5 years from 2012-2016. We fit generalized additive mixed models with cubic regression splines and restricted maximum likelihood estimation for smoothing parameters. RESULTS: Comparing weeks with 30°C versus 15°C average temperature, prevalence was 3.5% higher for diarrhea, 7.3% higher for Shiga toxin-producing Escherichia coli (STEC), 17.3% higher for enterotoxigenic E. coli (ETEC), and 8.0% higher for Cryptosporidium. Above-median weekly precipitation (median: 13mm; range: 0-396mm) was associated with 29% higher diarrhea (adjusted prevalence ratio 1.29, 95% CI 1.07, 1.55); higher Cryptosporidium, ETEC, STEC, Shigella, Campylobacter, Aeromonas, and adenovirus 40/41; and lower Giardia, sapovirus, and norovirus prevalence. Other associations were weak or null. DISCUSSION: Higher temperatures and precipitation were associated with higher prevalence of diarrhea and multiple enteropathogens; higher precipitation was associated with lower prevalence of some enteric viruses. Our findings emphasize the heterogeneity of the relationships between hydrometeorological variables and specific enteropathogens, which can be masked when looking at composite measures like all-cause diarrhea. Our results suggest that preventive interventions targeted to reduce enteropathogens just before and during the rainy season may more effectively reduce child diarrhea and enteric pathogen carriage in rural Bangladesh and in settings with similar meteorological characteristics, infrastructure, and enteropathogen transmission.


Assuntos
Diarreia , População Rural , Humanos , Bangladesh/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Lactente , Pré-Escolar , Fatores de Risco , População Rural/estatística & dados numéricos , Prevalência , Masculino , Feminino , Tempo (Meteorologia) , Escherichia coli Enterotoxigênica/isolamento & purificação , Cryptosporidium/isolamento & purificação , Temperatura , Escherichia coli Shiga Toxigênica/isolamento & purificação , Mudança Climática , Criptosporidiose/epidemiologia
16.
PLoS Negl Trop Dis ; 18(6): e0011836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857289

RESUMO

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.


Assuntos
Schistosoma haematobium , Schistosoma mansoni , Temperatura , Animais , Humanos , Schistosoma haematobium/fisiologia , Schistosoma mansoni/fisiologia , África Subsaariana/epidemiologia , Biomphalaria/parasitologia , Esquistossomose/transmissão , Esquistossomose/epidemiologia , Esquistossomose mansoni/transmissão , Esquistossomose mansoni/epidemiologia , Bulinus/parasitologia , Esquistossomose Urinária/transmissão , Esquistossomose Urinária/epidemiologia , Prevalência
17.
medRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826336

RESUMO

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.

18.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38105988

RESUMO

Mosquito vectors of pathogens (e.g., Aedes , Anopheles , and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically-plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.90). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming.

19.
J Neurosurg Case Lessons ; 5(13)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37014021

RESUMO

BACKGROUND: Intracranial epidermoid cysts are benign, slow-growing malformations that most commonly arise at the skull base. Maximizing resection of the cyst contents and the capsule reduces long-term recurrence but can be made difficult by cyst wall adherence to critical neurovascular structures. Expanded endonasal approaches (EEAs) offer an alternative to traditional open transcranial approaches for accessible epidermoid cysts. In this case report, the authors demonstrate a transclival EEA for a large, ventral brainstem epidermoid cyst. OBSERVATIONS: A 41-year-old woman who presented with progressive headaches, diplopia, malaise, and fatigue was found to have a 4.7-cm midline, ventral brainstem epidermoid cyst. She underwent an expanded endonasal transclival approach that exposed the brainstem from the level of the dorsum sella to the tip of the basion. A near-total resection was completed with removal of all cyst contents and most of the capsular wall. Reconstruction was completed with Duragen, an autologous fat graft, and a nasoseptal flap. Postoperatively, she had a partial left cranial nerve VI palsy that remained stable 8 weeks after surgery. LESSONS: The expanded endoscopic transclival approach can facilitate effective resection of midline, ventral epidermoid cysts.

20.
Annu Rev Resour Economics ; 14: 333-354, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38371741

RESUMO

Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change-including climate change, land-use change, urbanization, and global movement of individuals, species, and goods-may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA