Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 89(9): 1997-2012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441766

RESUMO

Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analysed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behaviour, incorporating environmental realism not possible in the laboratory while benefiting from the distinct capacity of camera traps to generate large datasets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. Only 9% of camera trap studies on predator-prey ecology in our review use experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.


Assuntos
Espécies Introduzidas , Comportamento Predatório , Animais
2.
R Soc Open Sci ; 6(1): 181702, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800399

RESUMO

Dispersal is fundamental to population dynamics and hence extinction risk. The dispersal success of animals depends on the biophysical structure of their environments and their biological traits; however, comparatively little is known about how evolutionary trade-offs among suites of biological traits affect dispersal potential. We developed a spatially explicit agent-based simulation model to evaluate the influence of trade-offs among a suite of biological traits on the dispersal success of vagile animals in fragmented landscapes. We specifically chose traits known to influence dispersal success: speed of movement, perceptual range, risk of predation, need to forage during dispersal, and amount of suitable habitat required for successful settlement in a patch. Using the metric of relative dispersal success rate, we assessed how the costs and benefits of evolutionary investment in these biological traits varied with landscape structure. In heterogeneous environments with low habitat availability and scattered habitat patches, individuals with more equal allocation across the trait spectrum dispersed most successfully. Our analyses suggest that the dispersal success of animals in heterogeneous environments is highly dependent on hierarchical interactions between trait trade-offs and the geometric configurations of the habitat patches in the landscapes through which they disperse. In an applied sense, our results indicate potential for ecological mis-alignment between species' evolved suites of dispersal-related traits and altered environmental conditions as a result of rapid global change. In many cases identifying the processes that shape patterns of animal dispersal, and the consequences of abiotic changes for these processes, will require consideration of complex relationships among a range of organism-specific and environmental factors.

3.
Science ; 364(6436): 173-177, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30846612

RESUMO

Populations of the world's largest carnivores are declining and now occupy mere fractions of their historical ranges. Theory predicts that when apex predators disappear, large herbivores become less fearful, occupy new habitats, and modify those habitats by eating new food plants. Yet experimental support for this prediction has been difficult to obtain in large-mammal systems. After the extirpation of leopards and African wild dogs from Mozambique's Gorongosa National Park, forest-dwelling antelopes [bushbuck (Tragelaphus sylvaticus)] expanded into treeless floodplains, where they consumed novel diets and suppressed a common food plant [waterwort (Bergia mossambicensis)]. By experimentally simulating predation risk, we demonstrate that this behavior was reversible. Thus, whereas anthropogenic predator extinction disrupted a trophic cascade by enabling rapid differentiation of prey behavior, carnivore restoration may just as rapidly reestablish that cascade.


Assuntos
Carnívoros , Ecossistema , Extinção Biológica , Comportamento Predatório , Animais , Antílopes , Canidae , Cadeia Alimentar , Florestas , Herbivoria , Moçambique , Parques Recreativos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA