Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Phys Chem A ; 125(1): 99-105, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33372791

RESUMO

The first-order hyperpolarizability of π-conjugated organic molecules is of particular interest for the fabrication of electro-optical modulators. Thus, we investigated the relationship between the molecular structure and the incoherent second-order nonlinear optical response (ßHRS) of four salicylidene derivatives (salophen, [Zn(salophen)(OH2)], 3,4-benzophen, [Zn(3,4-benzophen)(OH2)]) dissolved in DMSO. For that, we employed the Hyper-Rayleigh Scattering technique with picosecond pulse trains. Our experimental results pointed out dynamic ßHRS values between 32.0 ± 4.8 × 10-30 cm5/esu and 58.5 ± 8.0 × 10-30 cm5/esu at 1064 nm, depending on the molecular geometry of the salicylidene molecules. More specifically, the outcomes indicate a considerable increase of ßHRS magnitude (∼30%) when in the ligands are incorporated the Zn(II) ion. We ascribed such results to the rise of the planarity of the π-conjugated backbone of the chromophores caused by the Zn(II). Furthermore, we observed an increase of ∼50% in dynamic ßHRS when there is a replacement of one hydrogen atom (salophen molecule) by an acetophenone group (3,4-benzophen). This result is related to the increase of the effective π-electron number and the higher charge transfer induced at the excited state. All these findings were interpreted and supported in the light of time-dependent density functional theory (DFT) calculations. Solvent effects were considered in the quantum chemical calculations using the integral equation formalism variant of the polarizable continuum model.

2.
J Phys Chem A ; 124(2): 288-299, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31860299

RESUMO

The changes in the ability of three fluorescent derivatives of 2-(2'-hydroxyphenyl)benzothiazole to undergo excited-state intramolecular proton transfer (ESIPT) processes have been correlated with the rheological properties of four amino-polydimethylsiloxanes with different molar masses and containing different amounts of monomer units with amino pendant groups, in the presence and absence of a cross-linking molecule, CO2. The changes lead to a variety of species (keto, enol, and enolate forms) in both the ground and excited states. Calculations using the density-functional theory/time-dependent density-functional theory method at the CAM-B3LYP/6-311++G(d,p) level helped to identify how ESIPT is involved in the formation of the intermediates. The results demonstrate that proton transfer in 2-(2'-hydroxyphenyl)benzothiazoles is a powerful tool to identify local changes in the viscosity and micropolarity of the environment that are attributed to the structural differences of the amino-polydimethylsiloxanes and their cross-linking.

3.
J Phys Chem A ; 120(23): 3983-91, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27268751

RESUMO

An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.

4.
Opt Express ; 21(25): 30874-85, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514660

RESUMO

We perform a spectroscopic analysis of asphaltene in solution and in crude oil with the goal of designing an optical probe of asphaltene precipitation inside high-pressure cells. Quantitative analysis of steady-state spectroscopic data is employed to identify fluorescence and Raman contributions to the observed signals. Time-resolved fluorescence spectroscopy indicates that fluorescence lifetime can be used as a spectroscopic probe of asphaltene in crude oil. Quantitative confocal laser-scanning microscopy studies of asphaltene in n-heptane are used to calculate particle-size distributions as a function of time, both at the sample surface and asphaltene interior. The resulting precipitation kinetics is well described by stochastic numerical simulations of diffusion-limited aggregation. Based on these results, we present the design and construction of an apparatus to optically probe the in situ precipitation of asphaltene suitable for studies inside high pressure cells. Design considerations include the use of a spatial light modulator for aberration correction in microscopy measurements, together with the design of epi-fluorescence spectrometer, both fiber-based and for remote sensing fluorescence spectroscopy.


Assuntos
Microscopia/instrumentação , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Espectrometria de Fluorescência/instrumentação , Análise Espectral Raman/instrumentação , Precipitação Química , Desenho de Equipamento , Análise de Falha de Equipamento , Cinética
5.
J Phys Chem A ; 116(14): 3681-90, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22401265

RESUMO

The donor-acceptor copolymer containing benzothiadiazole (electron acceptor), linked to functionalized fluorene (electron donor), [poly[9,9-bis(3'-(tert-butyl propanoate))fluorene-co-4,7-(2,1,3-benzothiadiazole)] (LaPPS40), was synthesized through the Suzuki route. The polymer was characterized by scanning electron microscopy, gel permeation chromatography, NMR, thermal analysis, cyclic voltammetry, X-ray photoelectron spectroscopy, UV-vis spectrometry, and photophysical measurements. Theoretical calculations (density functional theory and semiempirical methodologies) used to simulate the geometry of some oligomers and the dipole moments of molecular orbitals involved were in excellent agreement with experimental results. Using such data, the higher energy absorption band was attributed to the π-π* (S(0) → S(4)) transition of the fluorene units and the lower lying band was attributed to the intramolecular (ICT) (S(0) → S(1)) charge transfer between acceptor (benzothiadiazole) and donor groups (fluorene) (D-A structure). The ICT character of this band was confirmed by its solvatochromic properties using solvents with different dielectric properties, and this behavior could be well described by the Lippert-Mataga equation. To explain the solvatochromic behavior, both the magnitude and orientation of the dipole moments in the electronic ground state and in the excited state were analyzed using the theoretical data. According to these data, the change in magnitude of the dipole moments was very small for both transitions but the spatial orientation changed remarkably for the lower energy band ascribed to the ICT band.

6.
Methods Appl Fluoresc ; 5(2): 024011, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504972

RESUMO

We have studied the photophysical and photochemical behavior of three compounds derived from 3-hydroxychromone (3-HC), capable of undergoing excited state proton transfer (ESIPT). The compounds have two substituents, located in positions 2 and 7, one on each ring of the 3-HC heterocycle. The substituent pattern shows different electron donating and acceptor features. The compounds were studied by absorption and emission spectroscopy, steady state anisotropy, and time resolved emission spectroscopy (TRES) as a function of temperature. Results were interpreted using time dependent density functional theory calculations. Compared to reference compounds of 3-HC substituted only in the 2 position, the compounds show similar absorption and emission spectra, shifted 20-30 nm to higher wavelengths due to extended conjugation. TRES shows the existence of ESIPT in the thermodynamic equilibrium regime. This process is endothermic in all three compounds. The different behavior compared to monosubstituted 3-HC is attributed to the extended conjugation and to the electron donor acceptor character of the substituents, which has a more pronounced effect when the electron acceptor is located in position 2.

7.
J Phys Chem B ; 109(33): 16180-7, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16853056

RESUMO

Steady-state and time-resolved emission spectroscopy (TRES) of the medium-sensitive probes 4-aminophthalimide (4-AP) and 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were performed at 77 and 298 K in vacuum-sealed thin films of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc). The two probes show similar red-edge effect in steady state emission and a red shift with time in TRES in PVA. In PVAc the red shifts are much smaller and the spectral shift for 4-AP is slower. 4-AP locates in highly polar environments in PVA, where H-bond interaction with the polymer is important. Prodan locates in less polar environments, as evidenced by the position of the emission maximum with respect to reference solvents. Consequently, the observed monoexponential spectral red shift with time of 4-AP in PVA and in PVAc is attributed to relaxation of the interaction of the probe with the hydroxy and acetate moieties, respectively. The more intense interaction of the lighter -OH moiety with the probes explains the greater and faster spectral shift observed in PVA compared to PVAc. The lifetime of this monoexponential spectral shift is independent of temperature in PVA and takes place with a highly negative activation entropy. This fact is attributed to a collective rearrangement of -OH groups to better interact with the excited state. This relaxation nevertheless does not account for the complete accommodation of the excited state. Prodan shows a linear variation of the spectral shift with time that can be explained by microheterogeneity. In PVA, the width at half-maximum of the emission spectra does not change with time for Prodan and it decays with a lifetime similar to the lifetime of the spectral shift in the case of 4-AP. The differences in the behavior of the probes are attributed to their different average location in the polymer matrix.

8.
J Colloid Interface Sci ; 283(2): 464-71, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15721920

RESUMO

A morphological analysis is presented for Langmuir films of the diazo dyes Sudan 4 (S4), Sudan 3 (S3), and Sudan red (SR), using Brewster angle microscopy. Stable nonmonomolecular structures are formed at the air-water interface denoted as a plateau in the pressure-area isotherms. Monolayer domains are evident by the contrastless image even before the pressure onset, which grow in size until it reached a condensed monolayer. This behavior resembles that of Langmuir films from simple aromatic fatty acids. Films from all the azo dyes display similar features, according to the surface potential isotherms and in situ polarized UV/vis spectroscopy except for the larger area per molecule occupied by S4 and SR. This is attributed to the presence of CH(3) groups that cause steric hindrance modifying the organization of diazo dye molecules at the air-water interface. UV/vis polarized absorption spectroscopy showed preferential orientation of S4 and S3 on the water surface, while SR molecules lie isotropically. For these three diazo dyes, film absorption was negligible at very large areas per molecule, becoming nonzero only at a critical area coinciding with the onset of surface potential. The critical area is ascribed to the formation of a H-bonded network between water molecules and diazo dye headgroups.

9.
Artigo em Inglês | MEDLINE | ID: mdl-23896292

RESUMO

Polymer films of poly(vinyl alcohol) containing the fluorescent dyes 4-aminophthalimide (AP) or 6-propionyl-2-dimethylamino-naphthalene (Prodan) are used as temperature-sensitive fluorescent coatings for remote temperature sensing. Temperature can be obtained by a two-wavelength ratiometric-based emission intensity measurement. The coatings are sensitive in a 100K temperature range that can be tuned by polymer-solute interactions. The usable range is 200-300 K for AP and 280-380 K for Prodan.


Assuntos
2-Naftilamina/análogos & derivados , Corantes Fluorescentes/química , Ftalimidas/química , Álcool de Polivinil/química , Tecnologia de Sensoriamento Remoto/métodos , 2-Naftilamina/química , Fluorescência , Temperatura
10.
Photochem Photobiol ; 89(6): 1346-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711153

RESUMO

Pyrene fluorescence spectra have been recorded in five poly(alkyl methacrylate)s (where alkyl is ethyl butyl, isobutyl, cyclohexyl and hexadecyl) over a 20-400 K temperature range. The changes in the position and the full width at half maximum (FWHM) of the 0-0 emission band (peak I) have been correlated with the structural characteristics of the alkyl groups in the different relaxation regimes of the polymers to assess the degree of coupling of the excited singlet states with the polymer cybotactic regions. Data treatment of the peak I positions using an electron-phonon model indicates that longitudinal optical modes are involved, and that the magnitude of coupling depends on the polymer structure and follows the same trend as the glass transition temperatures. The same spectral parameters have been correlated also with "hole" free volumes from positron annihilation spectroscopy over temperature ranges which span the glass or melting transitions of the polymers. Reasons why free volume and FWHM measurements follow the same trends, and other aspects of the systems, are discussed.


Assuntos
Metacrilatos/química , Pirenos/química , Temperatura
11.
J Phys Chem B ; 114(38): 12221-33, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20825216

RESUMO

Temperature-induced changes in the static and dynamic characteristics of the fluorescence from pyrene and N,N-dimethyl-3-(pyren-1-yl)propan-1-amine (PyC3NMe2) have been used to determine the locations and mobilities of these probes in the anisotropic environments provided by films of 5 poly(alkyl methacrylate) (PAMA) polymers in which alkyl is ethyl, butyl, isobutyl, cyclohexyl, and hexadecyl. Whereas emission from pyrene reports on the polarity of the guest sites and the ability of molecules to diffuse translationally between sites, emission from PyC3NMe2 yields information about the fluidity and the shape of the guest sites. Data have been obtained from 20 to >400 K, a range that spans the onsets of several relaxation processes in the hosts. Those data indicate that the pyrenyl groups reside near to ester functionalities in most of the PAMAs, although the distance from them (and the main chains) depends upon the bulkiness of the alkyl groups. Among the most important conclusions derived from this research is that the rates of segmental relaxation phenomena near the probe molecules--and not free volume, as was concluded previously from fluorescence measurements in polyethylene films--are the dominant contributors to the fluorescence changes. Of practical importance, changes in those rates have permitted the onset temperatures of many of the relaxation phenomena occurring in the vicinity of the probes to be located.


Assuntos
Ácidos Polimetacrílicos/química , Pirenos/química , Temperatura , Fluorescência , Membranas Artificiais , Estrutura Molecular
12.
Langmuir ; 23(26): 12886-92, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18020381

RESUMO

The combined effect of salt (10 mmol L(-1)) and surfactants on the sorption of the fluorescent brightener 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers was studied. Sorption efficiencies with both cationic and anionic surfactants were evaluated. Emission spectroscopy was used for quantitative analysis since Tinopal has an intense fluorescence. The sorption efficiency of the brightener is greater for solutions containing a cationic surfactant (DTAC) below the critical micelle concentration (cmc), while for an anionic surfactant (SDS) above its cmc the efficiency is greater. The profile of the sorption isotherms were interpreted in terms of the evolution of surfactant aggregation at the fiber/solution interface. Salt influences the efficiency of the Tinopal sorption on the modified cellulose fibers either because it decreases the cmc of the surfactants or because the ions screen the surface charges of the fiber which decreases the electrostatic interaction among the charged headgroup of the surfactant and the charged fiber surface.

13.
Langmuir ; 22(24): 9866-73, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17106975

RESUMO

In the present work, we studied the role of an anionic surfactant, sodium dodecyl sulfate, and a cationic surfactant, dodecyltrimethylammonium chloride, in the sorption of 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers. Fluorescence spectroscopy was used to quantify the amount of sorbed Tinopal CBS on the fiber surface. Differences in the spectral properties and the efficiency of sorption of the whitener/surfactant/fiber system are explained in terms of electrostatic interactions. Our results also show that the sorption efficiency is greater for solutions containing cationic surfactants only below the critical micelle concentration, while anionic surfactants show a smooth influence on the sorption process.

14.
Langmuir ; 21(12): 5414-20, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15924470

RESUMO

The adsorption of Congo red and tinopal CBS dyes on cellulose fibers was investigated using electronic absorption and fluorescence spectroscopies. Hydrogen bonds appear to be relevant for the dye-fiber interactions as indicated by the solvatochromism of Congo red in water, methanol, and dimethyl sulfoxide solutions, and when adsorbed on cellulose fibers. We also demonstrate that electrostatic interactions play an important role in the dye-medium interaction, through the analysis of absorption spectra of Congo red and fluorescence spectra of tinopal in aqueous solutions containing salt and in layer-by-layer nanostructured films with poly(allylamine hydrochloride). For instance, dye adsorption was enhanced when salt was added to the dipping solution, which was explained by the synergistic effect between the conformational changes of the cellulose and changes in the solvation layer around the cellulose chains and around dye molecules. On the basis of the fluorescence results for tinopal CBS, we inferred that dye aggregation is not relevant for adsorption on the fibers. In addition, fluorescence spectroscopy is proven very sensitive for studying the organization of dye molecules in layer-by-layer films, particularly those undergoing irreversible structural changes.


Assuntos
Benzenossulfonatos/química , Celulose/química , Vermelho Congo/química , Configuração de Carboidratos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Análise Espectral
15.
J Am Chem Soc ; 125(39): 11879-92, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14505410

RESUMO

Deformation processes in gel-crystallized ultrahigh molecular weight polyethylene (UHMWPE) films with draw ratios (DR) as high as 96 have been investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and positron annihilation lifetime spectroscopy (PALS). In addition, low concentrations of pyrene molecules have been introduced at the time of film preparation from the gels or afterward by sorption after film preparation, and the polarization of their electronic absorption and fluorescence spectra at different draw ratios has been measured over a large temperature range extending to below the glass transition. The pyrene-doped films have been irradiated to introduce covalently attached 1-pyrenyl groups, and these films at two draw ratios have been employed to investigate over large temperature ranges (1) the steady-state fluorescence intensity and (2) the rates of diffusion of N,N-dimethylaniline (DMA). These data have been correlated with the XRD, DSC, and PALS information obtained on the unmodified films. On the basis of analyses of this body of information, a novel deformation model that explains the decreased crystallinity and increased mean free volumes in gel-crystallized UHMWPE at low draw ratios is proposed. It involves "stretch" and "flip" motions of microfibrils present in the undrawn films. The high crystallinity content and stiffer chains due to drawing UHMWPE films result in weak alpha- and beta-relaxation processes, slower diffusion of DMA than in undrawn films, and orientation factors for doped pyrene molecules that are constant over a large temperature range. The overall picture that emerges allows several aspects of the morphology of UHMWPE, a polymer of fundamental importance in materials research, to be understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA