RESUMO
Several experiments have highlighted the complexity of stress interactions involved in plant response. The impact in field conditions of combined environmental constraints on the mechanisms involved in plant photosynthetic response, however, remains understudied. In a long-term field study performed in a managed grassland, we investigated the photosynthetic apparatus response of the perennial ryegrass (Lolium perenne L.) to environmental constraints and its ability to recover and acclimatize. Frequent field measurements of chlorophyll a fluorescence (ChlF) were made in order to determine the photosynthetic performance response of a population of L. perenne. Strong midday declines in the maximum quantum yield of primary photochemistry (FV FM ) were observed in summer, when a combination of heat and high light intensity increased photosynthetic inhibition. During this period, increase in photosystem I (PSI) activity efficiency was also recorded, suggesting an increase in the photochemical pathway for de-excitation in summer. Strong climatic events (e.g. heat waves) were shown to reduce electron transport between photosystem II (PSII) and PSI. This reduction might have preserved the PSI from photo-oxidation. Periods of low soil moisture and high levels of sun irradiance increased PSII sensitivity to heat stress, suggesting increased susceptibility to combined environmental constraints. Despite the multiple inhibitions of photosynthetic functionality in summer, the L. perenne population showed increased PSII tolerance to environmental stresses in August. This might have been a response to earlier environmental constraints. It could also be linked to the selection and/or emergence of well-adapted individuals.
Assuntos
Clorofila/metabolismo , Pradaria , Lolium/fisiologia , Fotossíntese , Estresse Fisiológico , Clorofila A , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Estações do Ano , Solo , Fatores de TempoRESUMO
⢠It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. ⢠Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. ⢠We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. ⢠Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Temperatura , Aclimatação , Dióxido de Carbono/efeitos da radiação , Mudança Climática , Plantas/efeitos da radiação , Chuva , Energia SolarRESUMO
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
RESUMO
A detailed analysis of the various processes at work in stable boundary layers was made. It pointed out that two main mechanisms may affect eddy covariance measurements in stable conditions and that their impacts were different. On one hand, intermittent turbulence produces strongly nonstationary events during which the validity of turbulent transport and storage measurements is uncertain. On the other hand, during breeze and drainage flow events, significant advection takes place and competes with turbulent flux and storage. Intermittent turbulence questions both the ability of eddy covariance systems to adequately capture turbulent flux and storage and the representativeness of the measurements. Ability of the systems to capture the fluxes could be improved by adapting the averaging time period or the high pass filtering characteristics. However, beyond this, the question of representativeness of the flux remains open as the flux measured during an intermittent turbulence event represents not only the source term, but also the removal of CO2 that built up in the control volume and that cannot be simply related to the source term. In these conditions, the u* discrimination is likely to be insufficient and should be completed with a stationarity criterion. Further research should allow determining better selection criteria. Advection occurs mainly in presence of flows associated with topographical slopes (drainage flows) or with land use changes (breezes). Direct advection measurements were performed at several sites, but the results were shown to be strongly site dependent. A classification based on the general flow pattern and on the source intensity evolution along streamlines was proposed here. Five different patterns were identified that helped to classify the different observations. The classification was found to be a fairly good fit for the observations. This could serve as a tool to better understand and quantify the fluxes at sites subjected to repeatable patterns.
Assuntos
Movimentos do Ar , Dióxido de Carbono/análise , Ritmo Circadiano , EcossistemaRESUMO
Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO2 gas exchange at the ecosystem-scale. Over a 2-year period, photosynthetic performance of a temperate grassland ecosystem was characterized by conducting frequent chlorophyll fluorescence (ChlF) measurements on three primary grassland species (Lolium perenne L., Taraxacum sp., and Trifolium repens L.). Ecosystem photosynthetic performance was estimated from measurements performed on the three dominant grassland species weighed based on their relative abundance. In addition, monitoring CO2 fluxes was performed by eddy covariance. The highest decrease in photosynthetic performance was detected in summer, when environmental constraints were combined. Dicot species (Taraxacum sp. and T. repens) presented the strongest capacity to up-regulate PSI and exhibited the highest electron transport efficiency under stressful environmental conditions compared with L. perenne. The decline in ecosystem photosynthetic performance did not lead to a reduction in gross primary productivity, likely because increased light energy was available under these conditions. The carbon amounts fixed at light saturation were not influenced by alterations in photosynthetic processes, suggesting photosynthesis was not impaired. Decreased photosynthetic performance was associated with high respiration flux, but both were influenced by temperature. Our study revealed variation in photosynthetic performance of a grassland ecosystem responded to environmental constraints, but alterations in photosynthetic processes appeared to exhibit a negligible influence on ecosystem CO2 fluxes.
RESUMO
BACKGROUND: In West Africa, natural ecosystems such as woodlands are the main source for energy, building poles and livestock fodder. They probably behave like net carbon sinks, but there are only few studies focusing on their carbon exchange with the atmosphere. Here, we have analyzed CO2 fluxes measured for 17 months by an eddy-covariance system over a degraded woodland in northern Benin. Specially, temporal evolution of the fluxes and their relationships with the main environmental factors were investigated between the seasons. RESULTS: This study shows a clear response of CO2 absorption to photosynthetic photon flux density (Qp), but it varies according to the seasons. After a significant and long dry period, the ecosystem respiration (R) has increased immediately to the first significant rains. No clear dependency of ecosystem respiration on temperature has been observed. The degraded woodlands are probably the "carbon neutral" at the annual scale. The net ecosystem exchange (NEE) was negative during wet season and positive during dry season, and its annual accumulation was equal to +29 ± 16 g C m-2. The ecosystem appears to be more efficient in the morning and during the wet season than in the afternoon and during the dry season. CONCLUSIONS: This study shows diurnal and seasonal contrasted variations in the CO2 fluxes in relation to the alternation between dry and wet seasons. The Nangatchori site is close to the equilibrium state according to its carbon exchanges with the atmosphere. The length of the observation period was too short to justify the hypothesis about the "carbon neutrality" of the degraded woodlands at the annual scale in West Africa. Besides, the annual net ecosystem exchange depends on the intensity of disturbances due to the site management system. Further research works are needed to define a woodland management policy that might keep these ecosystems as carbon sinks.
PROBLÉMATIQUE: En Afrique de l'Ouest, les écosystèmes naturels comme les forêts claires constituent la principale source d'énergie, de bois d'oeuvre et de fourrage pour le bétail. Ces forêts claires se comportent probablement comme de puits nets de carbone, mais très peu d'études ont porté sur les échanges de carbone de celles-ci avec l'atmosphère. Cette étude a analysé les flux de CO2 mesurés pendant 17 mois à l'aide d'un système d'eddy-covariance placé au dessus d'une forêt claire dégradée au nord du Bénin. De façon spécifique, l'évolution temporelle des flux de CO2 et leurs relations avec les principaux facteurs environnementaux ont été étudiées suivant les saisons. RÉSULTATS: Cette etude montre une réponse claire de l'absorption du CO2 à la densité de flux de photons photosynthétiques, mais elle est différente selon les saisons. Après une longue et significative période sèche, la respiration de l'écosystème (R) augmente immédiatement en réaction aux premières pluies significatives. Aucune dépendance claire de la respiration de l'écosystème à la température n'a été observée. Les forêts claires dégradées ouest-africaines sont probablement neutres en considérant leurs échanges de carbone à l'échelle annuelle avec l'atmosphère. L'échange net de l'écosystème (NEE) est négatif pendant la saison humide et positif durant la saison sèche, et son cumul annuel est égal + 29 ± 16 g C m−2. L'écosystème apparaît être plus efficient dans la matinée et en saison humide que pendant l'après-midi et en saison sèche. CONCLUSION: Cette étude a montré d es variations journalières et saisonnières contrastées des flux de CO2 en relation avec l'alternance entre les saisons sèche et humide. Le site investigué est à l'état d'équilibre en considérant ses échanges de carbone avec l'atmosphère. La durée de la période d'observation était trop courte pour justifier l'hypothèse de la neutralité des forêts claires dégradées ouest-africaines par rapport aux échanges de carbone avec l'atmosphère à l'échelle annuelle. En outre, l'échange net de l'écosystème dépend de l'intensité des perturbations dues au système de gestion du site. D'autres recherches sont nécessaires pour définir une politique de gestion des forêts claires qui contribueraient à maintenir ceux-ci comme de puits nets de carbone.