Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(3): 1356-1364, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428402

RESUMO

The ability of carboxylate groups to promote the direct functionalization of C-H bonds in organic compounds is unquestionably one of the most important discoveries in modern chemical synthesis. Extensive computational studies have indicated that this process proceeds through the deprotonation of a metal-coordinated C-H bond by the basic carboxylate, yet experimental validation of these predicted mechanistic pathways is limited and fraught with difficulty, mainly as rapid proton transfer is frequently obscured in ensemble measures in multistep reactions (i.e., a catalytic cycle consisting of several steps). In this paper, we describe a strategy to experimentally observe the microscopic reverse of the key C-H bond activation step underpinning functionalization processes (viz. M-C bond protonation). This has been achieved by utilizing photochemical activation of the thermally robust precursor [Mn(ppy)(CO)4] (ppy = metalated 2-phenylpyridine) in neat acetic acid. Time-resolved infrared spectroscopy on the picosecond-millisecond time scale allows direct observation of the states involved in the proton transfer from the acetic acid to the cyclometalated ligand, providing direct experimental evidence for the computationally predicted reaction pathways. The power of this approach to probe the mechanistic pathways in transition-metal-catalyzed reactions is demonstrated through experiments performed in toluene solution in the presence of PhC2H and HOAc. These allowed for the observation of sequential displacement of the metal-bound solvent by the alkyne, C-C bond formation though insertion in the Mn-C bond, and a slower protonation step by HOAc to generate the product of a Mn(I)-catalyzed C-H bond functionalization reaction.

2.
Inorg Chem ; 56(9): 5431-5440, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28422490

RESUMO

This study describes the synthesis and characterization of a new class of ferrocene-containing carbon monoxide-releasing molecules (CORMs, 1-3). The ferrocenyl group is both a recognized therapeutically viable coligand and a handle for informative infrared spectroelectrochemistry. Deoxymyoglobin CO-release assays and in situ infrared spectroscopy confirm compounds 2 and 3 as photoCORMs and 1 as a thermal CORM, attributed to the increased sensitivity of the Mn-ferrocenyl bond to protonation in 1. Electrochemical and infrared spectroelectrochemical experiments confirm a single reversible redox couple associated with the ferrocenyl moiety with the Mn tetracarbonyl center showing no redox activity up to +590 mV vs Fc/Fc+, though no concomitant CO release was observed in association with the redox activity. The effects of linker length on communication between the Fe and Mn centers suggest that the incorporation of redox-active ligands into CORMs focuses on the first coordination sphere of the CORM. Redox-tagged CORMs could prove to be a useful mechanistic probe; our findings could be developed to use redox changes to trigger CO release.

3.
Dalton Trans ; 48(43): 16233-16241, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31598614

RESUMO

Biotinylated pharmaceuticals are of great interest due to the strong interactions between biotinyl-functionality and streptavidin/avidin, which opens up avenues for efficient targeting and localisation. Three new carbon monoxide-releasing molecules (CO-RMs) have been synthesised and characterised using chemical and biological analysis. An alkyne-containing CO-RM 2 was found to be toxic to RAW 264.7 murine macrophages; and thus therapeutically viable CO-RM 1 was employed as the alkyne precursor for [3 + 2] cycloaddition chemistry enabling a new acid-containing CO-RM 4 and biotin-bioconugate-CO-RM (BiotinCORM 5) to be prepared. CO-RM 4 showed significantly improved solubility and BiotinCORM 5 acts as a photo-CO-RM. We have found that an avidin-CORM adduct of 5 is a CO-releasing protein, releasing CO on irradiation with light (400 nm). The avidin-biotinCORM adduct of 5 was found to have a binding energy of 10 kcal mol-1.


Assuntos
Avidina/química , Biotina/química , Monóxido de Carbono/química , Portadores de Fármacos/química , Estreptavidina/química , Alcinos/química , Animais , Reação de Cicloadição , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Camundongos , Estrutura Molecular , Processos Fotoquímicos , Células RAW 264.7
4.
Dalton Trans ; 48(43): 16426-16436, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31650147

RESUMO

Photolysis of trypto-CORM, fac-[Mn(tryp)(CO)3(NCMe)] (tryp = tryptophanate) at 400 nm results in controlled CO-release which may be utilised to inhibit the growth of Escherichia coli (E. coli). An investigation into the fundamental processes which underpin the CO-release event is described. Time-dependent density functional theory (TD-DFT) indicates that irradiation at 400 nm results in LMCT from the indole group of the amino acid to orbitals based on the metal as well as the carbonyl and NCMe ligands. Ultra-fast time-resolved infra-red spectroscopy (TRIR) demonstrates that in NCMe solution, photolysis (400 nm) results in loss of CO in under 3 ps with the sequential generation of three new states with two carbonyl ligands and a coordinated tryptophanate. The first species is assigned to vibrationally hot 3[Mn(tryp)(CO)2(NCMe)] which undergoes cooling to give the complex in its v = 0 state. This triplet state then undergoes solvation (τ≈ 20 ps) with a concomitant change in spin to give [Mn(tryp)(CO)2(NCMe)2] which persists for the remainder of the experiment (800 µs). These data indicate that following the initial photochemically induced loss of CO, any thermal CO loss is much slower. Related experiments with trypto-CORM in a mixture of DMSO and D2O gave analogous data, indicating that this process also occurs in the medium used for the evaluation of biological properties.

5.
Front Microbiol ; 9: 195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472912

RESUMO

Carbon monoxide releasing molecules (CORMs) have been suggested as a new synthetic class of antimicrobials to treat bacterial infections. Here we utilized a novel EBOR-CORM-1 ([NEt4][MnBr2(CO)4]) capable of water-triggered CO-release, and tested its efficacy against a collection of clinical Pseudomonas aeruginosa strains that differ in infection-related virulence traits. We found that while EBOR-CORM-1 was effective in clearing planktonic and biofilm cells of P. aeruginosa strain PAO1 in a concentration dependent manner, this effect was less clear and varied considerably between different P. aeruginosa cystic fibrosis (CF) lung isolates. While a reduction in cell growth was observed after 8 h of CORM application, either no effect or even a slight increase in cell densities and the amount of biofilm was observed after 24 h. This variation could be partly explained by differences in bacterial virulence traits: while CF isolates showed attenuated in vivo virulence and growth compared to strain PAO1, they formed much more biofilm, which could have potentially protected them from the CORM. Even though no clear therapeutic benefits against a subset of isolates was observed in an in vivo wax moth acute infection model, EBOR-CORM-1 was more efficient at reducing the growth of CF isolate co-culture populations harboring intraspecific variation, in comparison with efficacy against more uniform single isolate culture populations. Together these results suggest that CORMs could be effective at controlling genetically diverse P. aeruginosa populations typical for natural chronic CF infections and that the potential benefits of some antibiotics might not be observed if tested only against clonal bacterial populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA