Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artif Organs ; 45(7): 754-761, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33326636

RESUMO

Noninvasive continuous positive airway pressure (NIV-CPAP) is effective in patients with hypoxemic respiratory failure. Building evidence during the COVID-19 emergency reported that around 50% of patients in Italy treated with NIV-CPAP avoided the need for invasive mechanical ventilation. Standard NIV-CPAP systems operate at high gas flow rates responsible for noise generation and inadequate humidification. Furthermore, open-configuration systems require a high concentration of oxygen to deliver the desired FiO2 . Concerns outlined the risk for aerosolization in the ambient air and the possible pressure drop in hospital supply pipes. A new NIV-CPAP system is proposed that includes automatic control of patient respiratory parameters. The system operates as a closed-loop breathing circuit that can be assembled, combining a sleep apnea machine with existing commercially available components. Analytical simulation of a breathing patient and simulation with a healthy volunteer at different FiO2 were performed. Inspired and expired oxygen fraction and inspired and expired carbon dioxide pressure were recorded at different CPAP levels with different oxygen delivery. Among the main findings, we report (a) a significant (up to 30-fold) reduction in oxygen feeding compared to standard open high flow NIV-CPAP systems, to assure the same FiO2 levels, and (b) a negligible production of the noise generated in ventilatory systems, and consequent minimization of patients' discomfort. The proposed NIV-CPAP circuit, reshaped in closed-loop configuration with the blower outside of the circuit, has the advantages of minimizing aerosol generation, environmental contamination, oxygen consumption, and noise to the patient. The system is easily adaptable and can be implemented using standard CPAP components.


Assuntos
COVID-19/terapia , Pressão Positiva Contínua nas Vias Aéreas/instrumentação , Pulmão/virologia , Ruído/prevenção & controle , Ventilação não Invasiva/instrumentação , Oxigênio/administração & dosagem , SARS-CoV-2/patogenicidade , Ventiladores Mecânicos , Aerossóis , COVID-19/fisiopatologia , COVID-19/transmissão , COVID-19/virologia , Simulação por Computador , Pressão Positiva Contínua nas Vias Aéreas/efeitos adversos , Desenho de Equipamento , Filtração/instrumentação , Humanos , Pulmão/fisiopatologia , Ruído/efeitos adversos , Ventilação não Invasiva/efeitos adversos , Análise Numérica Assistida por Computador , Oxigênio/efeitos adversos
2.
J Biomech Eng ; 140(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029233

RESUMO

At present, the current gold-standard for osteoporosis diagnosis is based on bone mineral density (BMD) measurement, which, however, has been demonstrated to poorly estimate fracture risk. Further parameters in the hands of the clinicians are represented by the hip structural analysis (HSA) variables, which include geometric information of the proximal femur cross section. The purpose of this study was to investigate the suitability of HSA parameters as additional hip fracture risk predictors. With this aim, twenty-eight three-dimensional patient-specific models of the proximal femur were built from computed tomography (CT) images and a sideways fall condition was reproduced by finite element (FE) analyses. A tensile or compressive predominance based on minimum and maximum principal strains was determined at each volume element and a risk factor (RF) was calculated. The power of HSA variables combinations to predict the maximum superficial RF values was assessed by multivariate linear regression analysis. The optimal regression model, identified through the Akaike information criterion (AIC), only comprises two variables: the buckling ratio (BR) and the neck-shaft angle (NSA). In order to validate the study, the model was tested on two additional patients who suffered a hip fracture after a fall. The results classified the patients in the high risk level, confirming the prediction power of the adopted model.

3.
Clin Oral Implants Res ; 27(8): 1026-30, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26212204

RESUMO

OBJECTIVES: The purpose of this study was to describe the force generated by two different removal devices used to retrieve cemented crowns on implant abutments. The influence of six different operators was evaluated. MATERIAL AND METHODS: Three replicated Coronaflex(®) (Kaltenbach & Voigt GmbH, KaVo Dental GmbH) and reverse hammer setups were tested. The experimental setup has employed a screw bearing a diametral hole through which a loop holder passed. The screw was attached to a force transducer (Brüel & Kjaer, type 8201), and the loop holder arm was kept perpendicular to the transducer axis. The results were statistically evaluated with ANOVA. RESULTS: The operator has resulted to play significant influence with reference to reverse hammer (coefficient of variation 43.3%) rather than with Coronaflex(®) (9.8%). Evaluating every single operator, more variation can still be found by considering each reverse hammer (37.5%) rather than each Coronaflex(®) (8.8%). CONCLUSION: Coronaflex(®) device was found to systematically reach a more repeatable and higher peak amplitude of forces compared with reverse hammer, both by experienced and inexperienced operators.


Assuntos
Cimentação , Coroas , Dente Suporte , Remoção de Dispositivo/instrumentação , Retenção em Prótese Dentária , Humanos , Técnicas In Vitro
4.
Ann Biomed Eng ; 52(2): 239-249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726437

RESUMO

Mechanical tests on bone plates are mandatory for regulatory purposes and, typically, the ASTM F382 standard is used, which involves a four-point bending test setup to evaluate the cyclic bending fatigue performance of the bone plate. These test campaigns require a considerable financial outlay and long execution times; therefore, an accurate prediction of experimental outcomes can reduce test runtime with beneficial cost cuts for manufacturers. Hence, an analytical framework is here proposed for the direct estimation of the maximum bending moment of a bone plate under fatigue loading, to guide the identification of the runout load for regulatory testing. Eleven bone plates awaiting certification were subjected to a comprehensive testing campaign following ASTM F382 protocols to evaluate their static and fatigue bending properties. An analytical prediction of the maximum bending moment was subsequently implemented based on ultimate strength and plate geometry. The experimental loads obtained from fatigue testing were then used to verify the prediction accuracy of the analytical approach. Results showed promising predictive ability, with R2 coefficients above 0.95 in the runout condition, with potential impact in reducing the experimental tests needed for the CE marking of bone plates.


Assuntos
Placas Ósseas , Testes Mecânicos , Resistência à Tração , Teste de Materiais , Fenômenos Biomecânicos
5.
Ann Biomed Eng ; 52(3): 682-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151644

RESUMO

Super-elastic bone staples have emerged as a safe and effective alternative for internal fixation. Nevertheless, several biomechanical aspects of super-elastic staples are still unclear and require further exploration. Within this context, this study presents a combined experimental and computational approach to investigate the mechanical characteristics of super-elastic staples. Two commercially available staples with distinct geometry, characterized by two and four legs, respectively, were examined. Experimental four-point bending tests were conducted to evaluate staple performance in terms of generated forces. Subsequently, a finite element-based calibration procedure was developed to capture the unique super-elastic behavior of the staple materials. Finally, a virtual bench testing framework was implemented to separate the effect of geometry from that of the material characteristics on the mechanical properties of the devices, including generated force, strain distribution, and fatigue behavior. The experimental tests indicated differences in the force vs. displacement curves between staples. The material calibration procedure revealed marked differences in the super-elastic properties of the materials employed in staple 1 and staple 2. The results obtained from the virtual bench testing framework have showed that both geometric features and material characteristics had a substantial impact on the mechanical properties of the device, especially on the generated force, whereas their effect on strain distribution and fatigue behavior was comparatively less pronounced. To conclude, this study advances the biomechanical understanding of Nitinol super-elastic staples by separately investigating the impact of geometry and material characteristics on the mechanical properties of two commercially available devices.


Assuntos
Ligas , Suturas , Calibragem , Fixação Interna de Fraturas
6.
Sci Rep ; 14(1): 6397, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493233

RESUMO

Modular hip implants allow intra-operative adjustments for patient-specific customization and targeted replacement of damaged elements without full implant extraction. However, challenges arise from relative micromotions between components, potentially leading to implant failure due to cytotoxic metal debris. In this study magnitude and directions of micromotions at the taper junction were estimated, aiming to understand the effect of variations in head size and neck length. Starting from a reference configuration adhering to the 12/14 taper standard, six additional implant configurations were generated by varying the head size and/or neck length. A musculoskeletal multibody model of a prothesized lower limb was developed to estimate hip contact force and location during a normal walking task. Following the implant assembly, the multibody-derived loads were imposed as boundary conditions in a finite element analysis to compute the taper junction micromotions as the relative slip between the contacting surfaces. Results highlighted the L-size head as the most critical configuration, indicating a 2.81 µm relative slip at the mid-stance phase. The proposed approach enables the investigation of geometric variations in implants under accurate load conditions, providing valuable insights for designing less risky prostheses and informing clinical decision-making processes.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Desenho de Prótese , Fenômenos Mecânicos , Metais , Corrosão
7.
Bone ; 182: 117051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382701

RESUMO

Areal bone mineral density (aBMD) currently represents the clinical gold standard for hip fracture risk assessment. Nevertheless, it is characterised by a limited prediction accuracy, as about half of the people experiencing a fracture are not classified as at being at risk by aBMD. In the context of a progressively ageing population, the identification of accurate predictive tools would be pivotal to implement preventive actions. In this study, DXA-based statistical models of the proximal femur shape, intensity (i.e., density) and their combination were developed and employed to predict hip fracture on a retrospective cohort of post-menopausal women. Proximal femur shape and pixel-by-pixel aBMD values were extracted from DXA images and partial least square (PLS) algorithm adopted to extract corresponding modes and components. Subsequently, logistic regression models were built employing the first three shape, intensity and shape-intensity PLS components, and their ability to predict hip fracture tested according to a 10-fold cross-validation procedure. The area under the ROC curves (AUC) for the shape, intensity, and shape-intensity-based predictive models were 0.59 (95%CI 0.47-0.69), 0.80 (95%CI 0.70-0.90) and 0.83 (95%CI 0.73-0.90), with the first being significantly lower than the latter two. aBMD yielded an AUC of 0.72 (95%CI 0.59-0.82), found to be significantly lower than the shape-intensity-based predictive model. In conclusion, a methodology to assess hip fracture risk uniquely based on the clinically available imaging technique, DXA, is proposed. Our study results show that hip fracture risk prediction could be enhanced by taking advantage of the full set of information DXA contains.


Assuntos
Densidade Óssea , Fraturas do Quadril , Humanos , Feminino , Estudos Retrospectivos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/epidemiologia , Fêmur , Modelos Estatísticos , Absorciometria de Fóton/métodos
8.
Sci Rep ; 14(1): 1722, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242930

RESUMO

Intrinsic permeability describes the ability of a porous medium to be penetrated by a fluid. Considering porous scaffolds for tissue engineering (TE) applications, this macroscopic variable can strongly influence the transport of oxygen and nutrients, the cell seeding process, and the transmission of fluid forces to the cells, playing a crucial role in determining scaffold efficacy. Thus, accurately measuring the permeability of porous scaffolds could represent an essential step in their optimization process. In literature, several methods have been proposed to characterize scaffold permeability. Most of the currently adopted approaches to assess permeability limit their applicability to specific scaffold structures, hampering protocols standardization, and ultimately leading to incomparable results among different laboratories. The content of novelty of this study is in the proposal of an adaptable test bench and in defining a specific testing protocol, compliant with the ASTM International F2952-22 guidelines, for reliable and repeatable measurements of the intrinsic permeability of TE porous scaffolds. The developed permeability test bench (PTB) exploits the pump-based method, and it is composed of a modular permeability chamber integrated within a closed-loop hydraulic circuit, which includes a peristaltic pump and pressure sensors, recirculating demineralized water. A specific testing protocol was defined for characterizing the pressure drop associated with the scaffold under test, while minimizing the effects of uncertainty sources. To assess the operational capabilities and performance of the proposed test bench, permeability measurements were conducted on PLA scaffolds with regular (PS) and random (RS) micro-architecture and on commercial bovine bone matrix-derived scaffolds (CS) for bone TE. To validate the proposed approach, the scaffolds were as well characterized using an alternative test bench (ATB) based on acoustic measurements, implementing a blind randomized testing procedure. The consistency of the permeability values measured using both the test benches demonstrated the reliability of the proposed approach. A further validation of the PTB's measurement reliability was provided by the agreement between the measured permeability values of the PS scaffolds and the theory-based predicted permeability value. Once validated the proposed PTB, the performed measurements allowed the investigation of the scaffolds' transport properties. Samples with the same structure (guaranteed by the fused-deposition modeling technique) were characterized by similar permeability values, and CS and RS scaffolds showed permeability values in agreement with the values reported in the literature for bovine trabecular bone. In conclusion, the developed PTB and the proposed testing protocol allow the characterization of the intrinsic permeability of porous scaffolds of different types and dimensions under controlled flow regimes, representing a powerful tool in view of providing a reliable and repeatable framework for characterizing and optimizing scaffolds for TE applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Bovinos , Engenharia Tecidual/métodos , Porosidade , Reprodutibilidade dos Testes , Alicerces Teciduais/química , Permeabilidade
9.
J Sports Sci ; 31(7): 767-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23230960

RESUMO

Artificial turf is being used more and more often. It is more available than natural turf for use, requires much less maintenance and new products are able to comply with sport performance and athletes' safety. The purpose of this paper is to compare the mechanical and biomechanical responses of two different artificial turf infills (styrene butadiene rubber, from granulated vehicle tires, and thermoplastic rubber granules) and to compare them to the performance of natural fields where amateurs play (beaten earth, substantially). Three mechanical parameters have been calculated from laboratory tests: energy storage, energy losses and surface traction coefficient; results have been correlated with peak accelerations recorded on an instrumented athlete, on the field. The natural ground proved to be stiffer (-15% penetration depth for a given load), and to have a lower dynamic traction coefficient (-48%); the different kinds of infill showed significantly different stiffnesses (varying by more than 23%) and damping behaviour (varying by more than 31%). In running, peak vertical accelerations were lowest in the artificial ground with thermoplastic rubber granules, while, in slalom, both artificial grounds produced higher horizontal peak accelerations compared to the natural ground. Results are discussed in terms of their implications for athletic performance and injury risk.


Assuntos
Borracha , Corrida , Futebol , Solo , Propriedades de Superfície , Análise e Desempenho de Tarefas , Aceleração , Adulto , Traumatismos em Atletas , Desempenho Atlético , Fenômenos Biomecânicos , Butadienos , Futebol Americano , Fricção , Humanos , Plásticos , Sapatos , Futebol/lesões , Estireno , Adulto Jovem
10.
Comput Methods Programs Biomed ; 242: 107850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865005

RESUMO

BACKGROUND AND OBJECTIVES: Surgical meshes have demonstrated greater reliability compared to suture repair for abdominal wall hernia treatment. However, questions remain regarding the properties of these devices and their influence on surgical outcomes. Morphological properties, including pore size and porosity, play a crucial role in mesh integration and encapsulation. In this study, we introduce a straightforward image analysis procedure for accurately calculating both textile porosity and effective porosity. The latter specifically considers pores that prevent bridging, providing valuable insights into mesh performance. METHODS: A photographic setup was established to capture high-quality images of the meshes, accompanied by calibration images necessary for computing the effective porosity. The developed image analysis procedure comprises seven steps focused on improving the binarization process's quality, followed by the computation of textile and effective porosities. To facilitate usability, an app called "poreScanner" was designed using MATLAB app designer, guiding users through the algorithm described herein. The app was used to compute both porosities on 24 meshes sourced from various manufacturers, by averaging seven measurements obtained from as many images. The app's measurement stability was validated computing the coefficient of variation for both textile and effective porosity, for a total of 36 results (24 for the textile porosity and 12 for the effective one). Additionally, different operators independently tested one heavy and one light mesh, confirming the measurement's operator independence. RESULTS: The results on the coefficient of variation indicated values below 5 % in 34 out of 36 cases, regardless of the mesh density. Similarly, the same parameter was computed to assess the independence of the procedure from different operators, yielding a maximum value of 1.84 %. These findings confirm the robustness and user-independence of the measurement procedure. CONCLUSIONS: The procedure presented in this study is straightforward to replicate and yields dependable results. Its adoption has the potential to standardize the computation of surgical mesh porosity, enabling consistent determination of this crucial morphological parameter.


Assuntos
Telas Cirúrgicas , Têxteis , Porosidade , Reprodutibilidade dos Testes , Próteses e Implantes , Teste de Materiais
11.
J Mech Behav Biomed Mater ; 144: 105987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37413894

RESUMO

Despite the worldwide spread of surgical meshes in abdominal and inguinal surgery repair, the lack of specific standards for mechanical characterization of synthetic meshes, used in hernia repair and urogynecologic surgery, makes performance comparison between prostheses undoubtedly difficult. This consequently leads to the absence of acknowledged specifications about the mechanical requirements that synthetic meshes should achieve in order to avoid patient discomfort or hernia recurrences. The aim of this study is to provide a rigorous test protocol for the mechanical comparison between surgical meshes having the same intended use. The test protocol is composed of three quasi-static test methods: (1) ball burst test, (2) uniaxial tensile test, and (3) suture retention test. For each test, post-processing procedures are proposed to compute relevant mechanical parameters from the raw data. Some of the computed parameters, indeed, could be more suitable for comparison with physiological conditions (e.g., membrane strain and anisotropy), while others (e.g., uniaxial tension at rupture and suture retention strength) are reported as they provide useful mechanical information and could be convenient for comparisons between devices. The proposed test protocol was applied on 14 polypropylene meshes, 3 composite meshes, and 6 urogynecologic devices to verify its universal applicability towards meshes of different types and produced by various manufacturers, and its repeatability in terms of coefficient of variation. The test protocol resulted easily applicable to all the tested surgical meshes with intra-subject variability characterized by coefficient of variations settled around 0.05. Its use within other laboratories could allow the determination of the inter-subject variability assessing its repeatability among users of alternative universal testing machines.


Assuntos
Próteses e Implantes , Telas Cirúrgicas , Humanos , Resistência à Tração , Teste de Materiais , Polipropilenos , Herniorrafia
12.
J Mech Behav Biomed Mater ; 138: 105623, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535095

RESUMO

Self-expandable transcatheter aortic valves (TAVs) elastically resume their initial shape when implanted without the need for balloon inflation by virtue of the nickel-titanium (NiTi) frame super-elastic properties. Experimental findings suggest that NiTi mechanical properties can vary markedly because of a strong dependence on the chemical composition and processing operations. In this context, this study presents a computational framework to investigate the impact of the NiTi super-elastic material properties on the TAV mechanical performance. Finite element (FE) analyses of TAV implantation were performed considering two different TAV frames and three idealized aortic root anatomies, evaluating the device mechanical response in terms of pullout force magnitude exerted by the TAV frame and peak maximum principal stress within the aortic root. The widely adopted NiTi constitute model by Auricchio and Taylor (1997) was used. A multi-parametric sensitivity analysis and a multi-objective optimization of the TAV mechanical performance were conducted in relation to the parameters of the NiTi constitutive model. The results highlighted that: five NiTi material model parameters (EA, σtLS, σtUS, σtUE and σcLS) are significantly correlated with the FE outputs; the TAV frame geometry and aortic root anatomy have a marginal effect on the level of influence of each NiTi material parameter; NiTi alloy candidates with pareto-optimal characteristics in terms of TAV mechanical performance can be successfully identified. In conclusion, the proposed computational framework supports the TAV design phase, providing information on the relationship between the super-elastic behavior of the supplied NiTi alloys and the device mechanical response.


Assuntos
Valva Aórtica , Próteses Valvulares Cardíacas , Níquel , Titânio , Ligas , Estresse Mecânico
13.
Comput Methods Programs Biomed ; 242: 107781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683458

RESUMO

BACKGROUND AND OBJECTIVES: Bioresorbable braided stents, typically made of bioresorbable polymers such as poly-l-lactide (PLLA), have great potential in the treatment of critical limb ischemia, particularly in cases of long-segment occlusions and lesions with high angulation. However, the successful adoption of these devices is limited by their low radial stiffness and reduced elastic modulus of bioresorbable polymers. This study proposes a computational optimization procedure to enhance the mechanical performance of bioresorbable braided stents and consequently improve the treatment of critical limb ischemia. METHODS: Finite element analyses were performed to replicate the radial crimping test and investigate the implantation procedure of PLLA braided stents. The stent geometry was characterized by four design parameters: number of wires, wire diameter, initial stent diameter, and braiding angle. Manufacturing constraints were considered to establish the design space. The mechanical performance of the stent was evaluated by defining the radial force, foreshortening, and peak maximum principal stress of the stent as objectives and constraint functions in the optimization problem. An approximate relationship between the objectives, constraint, and the design parameters was defined using design of experiment coupled with surrogate modelling. Surrogate models were then interrogated within the design space, and a multi-objective design optimization was conducted. RESULTS: The simulation of radial crimping was successfully validated against experimental data. The radial force was found to be primarily influenced by the number of wires, wire diameter, and braiding angle, with the wire diameter having the most significant impact. Foreshortening was predominantly affected by the braiding angle. The peak maximum principal stress exhibited contrasting behaviour compared to the radial force for all parameters, with the exception of the number of wires. Among the Pareto-optimal design candidates, feasible peak maximum principal stress values were observed, with the braiding angle identified as the differentiating factor among these candidates. CONCLUSIONS: The exploration of the design space enabled both the understanding of the impact of design parameters on the mechanical performance of bioresorbable braided stents and the successful identification of optimal design candidates. The optimization framework contributes to the advancement of innovative bioresorbable braided stents for the effective treatment of critical limb ischemia.


Assuntos
Implantes Absorvíveis , Isquemia Crônica Crítica de Membro , Humanos , Estresse Mecânico , Stents , Polímeros , Desenho de Prótese
14.
Front Bioeng Biotechnol ; 11: 1114711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937770

RESUMO

Introduction: Spinal stability plays a crucial role in the success of the surgical treatment of lumbar vertebral metastasis and, in current practice, less invasive approaches such as short constructs have been considered. Concurrently, carbon fiber-reinforced (CFR) poly-ether-ether-ketone (PEEK) fixation devices are expanding in oncologic spinal surgery thanks to their radiotransparency and valid mechanical properties. This study attempts to provide an exhaustive biomechanical comparison of different CFR-PEEK surgical stabilizations through a highly reproducible experimental setup. Methods: A Sawbones biomimetic phantom (T12-S1) was tested in flexion, extension, lateral bending, and axial rotation. An hemisome lesion on L3 vertebral body was mimicked and different pedicle screw posterior fixations were realized with implants from CarboFix Orthopedics Ltd: a long construct involving two spinal levels above and below the lesion, and a short construct involving only the levels adjacent to L3, with and without the addition of a transverse rod-rod cross-link; to provide additional insights on its long-term applicability, the event of a pedicle screw loosening was also accounted. Results: Short construct reduced the overloading onset caused by long stabilization. Particularly, the segmental motion contribution less deviated from the physiologic pattern and also the long-chain stiffness was reduced with respect to the prevalent long construct. The use of the cross-link enhanced the short stabilization by making it significantly stiffer in lateral bending and axial rotation, and by limiting mobiliza-tion in case of pedicle screw loosening. Discussion: The present study proved in vitro the biomechanical benefits of cross-link augmentation in short CFR-PEEK fixation, demonstrating it to be a potential alternative to standard long fixation in the surgical management of lumbar metastasis.

15.
Proteins ; 80(6): 1598-609, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22411308

RESUMO

In this article, we present a computational multiscale model for the characterization of subcellular proteins. The model is encoded inside a simulation tool that builds coarse-grained (CG) force fields from atomistic simulations. Equilibrium molecular dynamics simulations on an all-atom model of the actin filament are performed. Then, using the statistical distribution of the distances between pairs of selected groups of atoms at the output of the MD simulations, the force field is parameterized using the Boltzmann inversion approach. This CG force field is further used to characterize the dynamics of the protein via Brownian dynamics simulations. This combination of methods into a single computational tool flow enables the simulation of actin filaments with length up to 400 nm, extending the time and length scales compared to state-of-the-art approaches. Moreover, the proposed multiscale modeling approach allows to investigate the relationship between atomistic structure and changes on the overall dynamics and mechanics of the filament and can be easily (i) extended to the characterization of other subcellular structures and (ii) used to investigate the cellular effects of molecular alterations due to pathological conditions.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Fenômenos Biomecânicos , Módulo de Elasticidade , Simulação de Dinâmica Molecular
16.
Front Bioeng Biotechnol ; 10: 1031183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686253

RESUMO

The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.

17.
Ann Biomed Eng ; 50(2): 211-221, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35044572

RESUMO

Severe predictions have been made regarding osteoporotic fracture incidence for the next years, with major economic and social impacts in a worldwide greying society. However, the performance of the currently adopted gold standard for fracture risk prediction, the areal Bone Mineral Density (aBMD), remains moderate. To overcome current limitations, the construction of statistical models of the proximal femur, based on three-dimensional shape and intensity (a hallmark of bone density), is here proposed for predicting hip fracture in a Caucasian postmenopausal cohort. Partial Least Square (PLS)-based statistical models of the shape, intensity and their combination were developed, and the corresponding modes and components were identified. Logistic regression models using the first two shape, intensity and shape-intensity PLS components were implemented and tested within a 10-fold cross-validation procedure as predictors of hip fracture. It emerged that (1) intensity components were superior to shape components in stratifying patients according to their fracture status, and that (2) a combination of intensity and shape improved patients risk stratification. The area under the ROC curve was 0.64, 0.85 and 0.92 for the models based on shape, intensity and shape-intensity combination respectively, against a 0.72 value for the aBMD standard approach. Based on these findings, the presented methodology turns out to be promising in tackling the need for an enhanced fracture risk assessment.


Assuntos
Fraturas do Quadril/etiologia , Modelos Estatísticos , Fraturas por Osteoporose/etiologia , Medição de Risco , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Feminino , Fêmur/fisiopatologia , Humanos , Pessoa de Meia-Idade , Pós-Menopausa/fisiologia , Valor Preditivo dos Testes , Curva ROC
18.
Ann Biomed Eng ; 50(3): 303-313, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35103867

RESUMO

Passive soft tissues surrounding the trochanteric region attenuate fall impact forces and thereby control hip fracture risk. The degree of attenuation is related to Soft Tissue Thickness (STT). STT at the neutral hip impact orientation, estimated using a regression relation in body mass index (BMI), was previously shown to influence the current absolute risk of hip fracture (ARF0) and its fracture classification accuracy. The present study investigates whether fracture classification using ARF0 improves when STT is determined from the subject's Computed-Tomography (CT) scans (i.e. personalised) in an orientation-specific (i.e. 3D) manner. STT is calculated as the shortest distance along any impact orientation between a semi-automatically segmented femur surface and an automatically segmented soft tissue/air boundary. For any subject, STT along any of the 33 impact orientations analysed always exceeds the value estimated using BMI. Accuracy of fracture classification using ARF0 improves when using personalised 3D STT estimates (AUC = 0.87) instead of the BMI-based STT estimate (AUC = 0.85). The improvement is smaller (AUC = 0.86) when orientation-specificity of CT-based STT is suppressed and is nil when personalisation is suppressed instead. Thus, fracture classification using ARF0 improves when CT is used to personalise STT estimates and improves further when, in addition, the estimates are orientation specific.


Assuntos
Fêmur/diagnóstico por imagem , Fraturas do Quadril/diagnóstico por imagem , Imageamento Tridimensional , Fenômenos Biomecânicos , Índice de Massa Corporal , Humanos , Modelos Biológicos , Medição de Risco/métodos , Tomografia Computadorizada por Raios X
19.
J Mech Behav Biomed Mater ; 125: 104886, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695660

RESUMO

OBJECTIVE: To evaluate the effects of curing time, post-space region and cyclic fatigue on the micromechanical properties of a fiber-post luting cement. The null hypotheses were that (1) curing time, (2) fatigue and (3) post-space region does not affect the nanoindentation modulus and hardness of the dual-curing cement. MATERIALS AND METHODS: 48 premolars were endodontically treated and a class I cavity and 8 mm deep post space was prepared. Fiber posts were luted with a universal, dualized adhesive system and a dual-curing cement following manufacturer's instructions. Specimens were divided into three groups (16 specimens for each group) according to light-curing time (no light-curing, 20 s light-curing and 120 s light-curing), which was performed with a LED lamp at 1000 mW/cm 2. The coronal part of the cavity was restored using a nano-filled resin composite. After 24 h, 8 specimens for each group were randomly extract in order to undergo to fatigue test in wet condition through a chewing simulator, while the other specimens were kept in distilled water as benchmark. All the restored teeth were then sectioned in 1 mm thick slices perpendicularly to the fiber post axis. Specimen slices were classified in coronal and apical to be tested through a nanoindenter. Data were analyzed through Kruskal-Wallis test with a significance level of 1%, in order to evaluate the influence of treatments (i.e., curing time and cyclic loading) on the micromechanical properties of the tested luting cement. RESULTS: Both fatigue and curing time significantly influenced nanoindentation modulus and hardness of dual-curing cement (p < 0.01). No significant differences were reported for post space region. A significant interaction was found among the analyzed factors (p < 0.01). SIGNIFICANCE: 120 s light-curing time is recommended in order to achieve optimal mechanical proprieties, independently from post space region and cyclic fatigue. As matter of fact, 120 s light-curing allowed to prevent strain hardening induced by the fatigue simulation.


Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Cimentos Ósseos , Resinas Compostas , Cimentos de Ionômeros de Vidro
20.
Front Bioeng Biotechnol ; 10: 1011806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568311

RESUMO

An experimental set-up is presented for the in vitro characterization of the fluid dynamics in personalized phantoms of healthy and stenosed coronary arteries. The proposed set-up was fine-tuned with the aim of obtaining a compact, flexible, low-cost test-bench for biomedical applications. Technically, velocity vector fields were measured adopting a so-called smart-PIV approach, consisting of a smartphone camera and a low-power continuous laser (30 mW). Experiments were conducted in realistic healthy and stenosed 3D-printed phantoms of left anterior descending coronary artery reconstructed from angiographic images. Time resolved image acquisition was made possible by the combination of the image acquisition frame rate of last generation commercial smartphones and the flow regimes characterizing coronary hemodynamics (velocities in the order of 10 cm/s). Different flow regimes (Reynolds numbers ranging from 20 to 200) were analyzed. The smart-PIV approach was able to provide both qualitative flow visualizations and quantitative results. A comparison between smart-PIV and conventional PIV (i.e., the gold-standard experimental technique for bioflows characterization) measurements showed a good agreement in the measured velocity vector fields for both the healthy and the stenosed coronary phantoms. Displacement errors and uncertainties, estimated by applying the particle disparity method, confirmed the soundness of the proposed smart-PIV approach, as their values fell within the same range for both smart and conventional PIV measured data (≈5% for the normalized estimated displacement error and below 1.2 pixels for displacement uncertainty). In conclusion, smart-PIV represents an easy-to-implement, low-cost methodology for obtaining an adequately robust experimental characterization of cardiovascular flows. The proposed approach, to be intended as a proof of concept, candidates to become an easy-to-handle test bench suitable for use also outside of research labs, e.g., for educational or industrial purposes, or as first-line investigation to direct and guide subsequent conventional PIV measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA