Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Vet Res ; 51(1): 80, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546263

RESUMO

Understudied, coinfections are more frequent in pig farms than single infections. In pigs, the term "Porcine Respiratory Disease Complex" (PRDC) is often used to describe coinfections involving viruses such as swine Influenza A Virus (swIAV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine CircoVirus type 2 (PCV2) as well as bacteria like Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and Bordetella bronchiseptica. The clinical outcome of the various coinfection or superinfection situations is usually assessed in the studies while in most of cases there is no clear elucidation of the fine mechanisms shaping the complex interactions occurring between microorganisms. In this comprehensive review, we aimed at identifying the studies dealing with coinfections or superinfections in the pig respiratory tract and at presenting the interactions between pathogens and, when possible, the mechanisms controlling them. Coinfections and superinfections involving viruses and bacteria were considered while research articles including protozoan and fungi were excluded. We discuss the main limitations complicating the interpretation of coinfection/superinfection studies, and the high potential perspectives in this fascinating research field, which is expecting to gain more and more interest in the next years for the obvious benefit of animal health.


Assuntos
Coinfecção/veterinária , Doenças Respiratórias/veterinária , Superinfecção/veterinária , Doenças dos Suínos/microbiologia , Animais , Coinfecção/microbiologia , Coinfecção/virologia , Doenças Respiratórias/microbiologia , Doenças Respiratórias/virologia , Superinfecção/microbiologia , Superinfecção/virologia , Sus scrofa , Suínos , Doenças dos Suínos/virologia
2.
Vet Res ; 50(1): 91, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703726

RESUMO

New vaccine formulations that include novel strains of Mycoplasma hyopneumoniae and innovative adjuvants designed to induce cellular immunity could improve vaccine efficacy against this pathogen. The aim of this experimental study was to assess the efficacy of three experimental bacterin formulations based on M. hyopneumoniae field strain F7.2C which were able to induce cellular immunity. The formulations included a cationic liposome formulation with the Mincle receptor ligand trehalose 6,6-dibehenate (Lipo_DDA:TDB), a squalene-in-water emulsion with Toll-like receptor (TLR) ligands targeting TLR1/2, TLR7/8 and TLR9 (SWE_TLR), and a poly(lactic-co-glycolic acid) micro-particle formulation with the same TLR ligands (PLGA_TLR). Four groups of 12 M. hyopneumoniae-free piglets were primo- (day (D) 0; 39 days of age) and booster vaccinated (D14) intramuscularly with either one of the three experimental bacterin formulations or PBS. The pigs were endotracheally inoculated with a highly and low virulent M. hyopneumoniae strain on D28 and D29, respectively, and euthanized on D56. The main efficacy parameters were: respiratory disease score (RDS; daily), macroscopic lung lesion score (D56) and log copies M. hyopneumoniae DNA determined with qPCR on bronchoalveolar lavage (BAL) fluid (D42, D56). All formulations were able to reduce clinical symptoms, lung lesions and the M. hyopneumoniae DNA load in the lung, with formulation SWE_TLR being the most effective (RDSD28-D56 -61.90%, macroscopic lung lesions -88.38%, M. hyopneumoniae DNA load in BAL fluid (D42) -67.28%). Further experiments raised under field conditions are needed to confirm these results and to assess the effect of the vaccines on performance parameters.


Assuntos
Vacinas Bacterianas/farmacologia , Mycoplasma hyopneumoniae/efeitos dos fármacos , Pneumonia Suína Micoplasmática/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Líquido da Lavagem Broncoalveolar/microbiologia , Pulmão/patologia , Pneumonia Suína Micoplasmática/microbiologia , Suínos
3.
J Immunol ; 197(12): 4791-4806, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27837108

RESUMO

Porcine dendritic cells (DCs) are relatively well characterized, but a clear-cut identification of all DC subsets combined with full transcriptional profiling was lacking, preventing an unbiased insight into the functional specializations of DC subsets. Using a large panel of Abs in multicolor flow cytometry, cell sorting, and RNA sequencing we identified and characterized the porcine equivalent of conventional DCs (cDC) 1 and cDC2 as well as plasmacytoid DCs (pDCs) in the peripheral blood of pigs. We demonstrate that cDC1 are CD135+CD14-CD172alowCADM1+wCD11R1+ cells, cDC2 are CD135+CD14-CD172a+CADM1+CD115+wCD11R1+CD1+ cells and pDCs are CD4+CD135+CD172a+CD123+CD303+ cells. As described in other species, only cDC1 express BATF3 and XCR1, cDC2 express FCER1A and FCGR2B, and only pDCs express TCF4 and NRP1 Nevertheless, despite these cross-species conserved subset-specific transcripts, porcine pDCs differed from the species described so far in many expressed genes and transcriptomic profiling clustered pDCs more distantly from cDCs than monocytes. The response of porcine DC subsets to TLR ligands revealed that pDCs are by far the most important source of TNF-α, IL-12p40, and of course IFN-α, whereas cDCs are most efficient in MHC and costimulatory molecule expression. Nevertheless, upregulation of CD40 and CD86 in cDCs was critically influenced or even dependent on the presence of pDCs, particularly for TLR 7 and 9 ligands. Our data demonstrate that extrapolation of data on DC biology from one species to another has to be done with care, and it shows how functional details have evolved differentially in different species.


Assuntos
Células Sanguíneas/fisiologia , Células Dendríticas/fisiologia , Especificidade da Espécie , Suínos/imunologia , Transcriptoma , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Interferon gama/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
J Infect Dis ; 212(8): 1332-40, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25838265

RESUMO

CCL20 is a chemokine with antimicrobial activity. We investigated its expression and role during neonatal cryptosporidiosis, a worldwide protozoan enteric disease leading to severe diarrhea. Surprisingly, during infection by Cryptosporidium parvum, CCL20 production by the intestine of neonatal mice is reduced by a mechanism independent both of the enteric flora and of interferon γ, a key cytokine for the resolution of this infection. However, oral administration of recombinant CCL20 to neonatal mice significantly reduced the parasite load by a mechanism that was independent of immune cell recruitment and occurred instead by direct cytolytic activity on free stages of the parasite. MiR21 functionally targets CCL20 and is upregulated during the infection, thus contributing to the downregulation of the chemokine. Our findings demonstrate for the first time the direct antiparasitic activity of CCL20 against an enteric protozoan and its downregulation during C. parvum infection, which is detrimental to parasite clearance.


Assuntos
Anti-Infecciosos/metabolismo , Quimiocina CCL20/metabolismo , Criptosporidiose/imunologia , Cryptosporidium parvum/fisiologia , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Linhagem Celular , Quimiocina CCL20/genética , Modelos Animais de Doenças , Células Epiteliais , Interferon gama/genética , Interferon gama/metabolismo , Intestinos/imunologia , Intestinos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Organismos Livres de Patógenos Específicos , Esporozoítos
5.
Infect Immun ; 83(1): 441-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385801

RESUMO

Streptococcus suis serotype 2 is an extracellular encapsulated bacterium that causes severe septicemia and meningitis in swine and humans. Albeit crucial in the fight against encapsulated bacteria, the nature of the capsular polysaccharide (CPS)-specific antibody (Ab) response during S. suis type 2 infection is unknown. We compared for the first time the features of CPS-specific versus protein-specific Ab responses during experimental infections with live virulent S. suis type 2 in mice. The primary protein-specific Ab response was dominated by both type 1 and 2 IgG subclasses, whereas IgM titers were more modest. The secondary protein-specific Ab response showed all of the features of a memory response with faster kinetics and boosted the titers of all Ig isotypes. In contrast, the primary CPS-specific Ab response was either inexistent or had titers only slightly higher than those in noninfected animals and was essentially composed of IgM. A poor CPS-specific memory response was observed, with only a moderate boost in IgM titers and no IgG. Both protein- and CPS-specific Ab responses were Toll-like receptor 2 independent. By using S. suis type 2 strains of European or North American origin, the poor CPS-specific Ab response was demonstrated to be independent of the genotypic/phenotypic diversity of the strain within serotype 2. Finally, the CPS-specific Ab response was also impaired and lacked isotype switching in S. suis-infected pigs, the natural host of the bacterium. The better resistance of preinfected animals to reinfection with the same strain of S. suis type 2 might thus more likely be related to the development of a protein rather than CPS Ab response.


Assuntos
Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/imunologia , Animais , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Imunoglobulina M/sangue , Memória Imunológica , Camundongos Endogâmicos C57BL , Sorogrupo , Streptococcus suis/classificação , Suínos
6.
Front Immunol ; 12: 745315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671358

RESUMO

Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.


Assuntos
Cabras/imunologia , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Virulência/imunologia , Animais , Perfilação da Expressão Gênica , Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Proteômica
7.
Immunology ; 129(3): 396-405, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19922422

RESUMO

Various dendritic cell (DC) populations exist that differ in phenotype and ability to present antigen to T cells. For example, plasmacytoid DCs (pDCs) are less potent T cell activators compared with conventional DCs (cDCs). Here, we compared porcine blood DCs (BDCs), containing pDCs and cDCs, and monocyte-derived DCs (MoDC), consisting of cDCs, in their phenotype, ability to uptake antigen, activation and maturation and their ability to present antigen to autologous T cells. Pigs represent an important animal model, whose immune system in many respects closely resembles that of humans. For example, the distribution of Toll-like receptors is similar to that of humans, in contrast to that of mice. Here we demonstrate that both populations endocytose foreign material. Following lipopolysaccharide stimulation, CD80/86 and chemokine receptor (CCR)7 expression was increased in both populations as was the expression of the chemokine ligands (CCL)-2, CCL-4, CCL-20 and CXCL-2. Although basal and post-stimulation protein concentrations of interleukins 6 and 8 and tumour necrosis factor-alpha were higher in MoDCs, protein concentrations showed a higher fold increase in BDCs. Antigen-specific proliferation of autologous T cells was induced by MoDCs and BDCs. Interestingly, while MoDCs induced stronger proliferation in naive T cells, no difference in proliferation was observed when primed T cells were studied. These results demonstrate that isolated porcine BDCs are highly responsive to stimulation with lipopolysaccharide and are functionally able to drive primed T-cell proliferation to the same extent as MoDCs.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Monócitos/citologia , Sus scrofa , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Quimiocinas/genética , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Dextranos/imunologia , Endocitose/imunologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Expressão Gênica/efeitos dos fármacos , Imunofenotipagem , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/imunologia , Ovalbumina/imunologia , Receptores CCR7/genética , Linfócitos T/imunologia
8.
Vet Microbiol ; 240: 108541, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902489

RESUMO

Mycoplasma (M.) hyopneumoniae is the etiological agent of enzootic pneumonia in pigs and is closely related to M. hyorhinis, which can be isolated from the healthy mucosal surfaces of the upper respiratory tract. In rare cases it can also cause arthritis and polyserositis. Since the innate immune system is an important first line of defense and promotes adaptive immune responses, we characterized the innate immune response of various antigen presenting cells (APCs) to M. hyopneumoniae and M. hyorhinis, which differ in their pathogenicity in vivo. Porcine peripheral blood mononuclear cells were infected with different multiplicities of infection (MOI) of live and inactivated porcine mycoplasmas. Both Mycoplasma species induced strong tumour necrosis factor (TNF) responses in monocytes, with a stronger activation by M. hyorhinis. This higher stimulatory activity was also confirmed for CD40 upregulation. Conventional and plasmacytoid dendritic cells (cDC and pDC, respectively) did not or poorly respond to mycoplasmas in terms of TNF expression but more efficiently in terms of CD40 upregulation. Again, these responses were generally stronger with M. hyorhinis than with M. hyopneumoniae. Both Mycoplasma species also activated B cells in terms of CD25 upregulation, proliferation, and IgM secretion. Interestingly, while the induction of CD25 and in particular proliferation was higher with M. hyorhinis, the IgM secretion did not differ between the two species with the exception of the highest dose of M. hyopneumoniae,which appeared to suppress IgM responses. Taken together, our results provide a comparative analysis of innate immune response with different porcine APCs and demonstrate Mycoplasma species-dependent differences, which could relate to their different pathogenicity in vivo.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunidade Inata , Leucócitos Mononucleares/imunologia , Infecções por Mycoplasma/veterinária , Mycoplasma hyopneumoniae/imunologia , Mycoplasma hyorhinis/imunologia , Animais , Células Apresentadoras de Antígenos/microbiologia , Linfócitos B/imunologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Imunoglobulina M/análise , Imunoglobulina M/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Leucócitos Mononucleares/microbiologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Mycoplasma hyopneumoniae/patogenicidade , Mycoplasma hyorhinis/patogenicidade , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
9.
Front Immunol ; 11: 1429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733474

RESUMO

The present study investigated the transcriptomic response of porcine dendritic cells (DC) to innate stimulation in vitro and in vivo. The aim was to identify DC subset-specialization, suitable Toll-like receptor (TLR) ligands targeting plasmacytoid DC (pDC), and the DC activation profile during highly and low virulent classical swine fever virus (CSFV, strain Eystrup and Pinar del Rio, respectively) infection, chosen as model for a virus causing a severe immunopathology. After identification of porcine conventional DC (cDC) 1, cDC2, pDC and a monocyte-derived subset in lymphoid tissues, we characterized DC activation using transcriptomics, and focused on chemokines, interferons, cytokines, as well as on co-stimulatory and inhibitory molecules. We demonstrate that porcine pDC provide important signals for Th1 and interferon responses, with CpG triggering the strongest responses in pDC. DC isolated early after infection of pigs with either of the two CSFV strains showed prominent upregulation of CCL5, CXCL9, CXCL10, CXCL11, and XCL1, as well as of the cytokines TNFSF13B, IL6, IL7, IL12B, IL15, IL27. Transcription of IL12B and many interferon genes were mostly restricted to pDC. Interestingly, the infection was associated with a prominent induction of inhibitory and cell death receptors. When comparing low and highly virulent CSFV strains, the latter induced a stronger inflammatory and antiviral response but a weaker cell cycle response, and reduced antigen presentation functions of DC. Taken together, we provide high-resolution information on DC activation in pigs, as well as information on how DC modulation could be linked to CSFV immunopathology.


Assuntos
Peste Suína Clássica/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Suínos/imunologia , Animais , Vírus da Febre Suína Clássica/imunologia , Suínos/virologia
11.
Front Immunol ; 10: 1087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178860

RESUMO

We characterized five different vaccine candidates and a commercial vaccine in terms of safety, immunogenicity and using a systems vaccinology approach, with the aim to select novel vaccine candidates against Mycoplasma hyopneumoniae. Seven groups of six M. hyopneumoniae-free piglets were primo- and booster vaccinated with the different experimental bacterin formulations, the commercial vaccine Hyogen® as a positive control or PBS as a negative control. The experimental bacterin was formulated with cationic liposomes + c-di-AMP (Lipo_AMP), cationic liposomes + Toll-like receptor (TLR) 2/1, TLR7, and TLR9 ligands (TLR ligands; Lipo_TLR), micro-particles + TLR ligands (PLGA_TLR), squalene-in-water emulsion + TLR ligands (SWE_TLR), or DDA:TDB liposomes (Lipo_DDA:TDB). Lipo_DDA:TDB and Lipo_AMP were the most potent in terms of serum antibody induction, and Lipo_DDA:TDB, Lipo_AMP, and SWE_TLR significantly induced Th1 cytokine-secreting T-cells. Only PLGA_TLR appeared to induce Th17 cells, but was unable to induce serum antibodies. The transcriptomic analyses demonstrated that the induction of inflammatory and myeloid cell blood transcriptional modules (BTM) in the first 24 h after vaccination correlated well with serum antibodies, while negative correlations with the same modules were found 7 days post-vaccination. Furthermore, many cell cycle and T-cell BTM upregulated at day seven correlated positively with adaptive immune responses. When comparing the delivery of the identical TLR ligands with the three formulations, we found SWE_TLR to be more potent in the induction of an early innate immune response, while the liposomal formulation more strongly promoted late cell cycle and T-cell BTM. For the PLGA formulation we found signs of a delayed and weak perturbation of these BTM. Lipo_AMP was found to be the most potent vaccine at inducing a BTM profile similar to that correlating with adaptive immune response in this and other studies. Taken together, we identified four promising vaccine candidates able to induce M. hyopneumoniae-specific antibody and T-cell responses. In addition, we have adapted a systems vaccinology approach developed for human to pigs and demonstrated its capacity in identifying early immune signatures in the blood relating to adaptive immune responses. This approach represents an important step in a more rational design of efficacious vaccines for pigs.


Assuntos
Vacinas Bacterianas/imunologia , Mycoplasma hyopneumoniae/imunologia , Pneumonia Suína Micoplasmática/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/química , Ciclo Celular , Vias de Administração de Medicamentos , Composição de Medicamentos , Perfilação da Expressão Gênica , Imunidade Celular , Imunidade Humoral , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pneumonia Suína Micoplasmática/genética , Suínos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinação
12.
Microbes Infect ; 10(4): 390-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18403229

RESUMO

Chemokines play a critical role in immune cell trafficking and the transition from an innate to an acquired immune response. We analyzed host response in neonatal mice deficient in chemokine receptor CCR5 following infection with the intracellular protozoan parasite Cryptosporidium parvum. CCR5 neonatal mice had a higher parasite burden at the early stage of infection but eliminated the parasite as efficiently as their wild-type counterparts. The higher sensitivity of neonates at the beginning of infection was not due to an altered IFNgamma response. An increased CCR2-attracting chemokine response associated with the recruitment of CCR2-positive cells in the infected mucosa may have compensated for the absence of CCR5. A lack of CCR5 thus has an impact in the early stage of C. parvum infection in neonates, but this receptor is dispensable for subsequent parasite elimination.


Assuntos
Criptosporidiose/imunologia , Cryptosporidium parvum/fisiologia , Receptores CCR5/imunologia , Animais , Cryptosporidium parvum/isolamento & purificação , Interferon gama/biossíntese , Intestinos/parasitologia , Camundongos , Receptores CCR2/biossíntese , Receptores CCR2/imunologia , Receptores CCR5/deficiência
13.
Dev Comp Immunol ; 84: 181-192, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29408047

RESUMO

Considering that macrophage functions are strongly impacted by the local tissue environment and the type of immune response, the aim of this study was to carefully set the methodological baseline for phenotype and functions of polarized porcine monocyte-derived macrophages. To this end, macrophages were generated in autologous serum alone or with colony-stimulating factor (CSF)-1 or CSF-2, and subsequently polarized with interferon (IFN)γ, interleukin-4 or IFNß. IFNγ promoted expression of MHC class I, MHC class II, CD11a, and CD40 as well as LPS-induced IL-6 and IL-12. A hallmark of interleukin-4 was Arginase 1 and CD203a upregulation, without abrogating pro-inflammatory cytokine production. IFNß induced CD169, MHC class I, CD40, CD80/86, but suppressed IL-6, IL-12 and tumor-necrosis-factor secretion. CSF-2 alone altered macrophage differentiation and promoted an IFNγ-like polarization. Altogether, the results provide a comprehensive overview of porcine macrophage polarization, and demonstrate commonalities with other species as well as peculiarities of the pig.


Assuntos
Interferon beta/metabolismo , Interferon gama/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Suínos/imunologia , Animais , Antígenos CD/metabolismo , Arginase/metabolismo , Diferenciação Celular , Células Cultivadas , Fatores Estimuladores de Colônias/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Interleucina-4/metabolismo , Especificidade da Espécie
14.
Dev Comp Immunol ; 84: 361-370, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29555549

RESUMO

The present study investigated the innate immune response in vitro to determine porcine neonate responses with Toll-like receptor (TLR)2 ligand (Pam3Cys) or TLR9 ligand (CpG) and compared these with adults. We identified the same phenotypically defined dendritic cell (DC) subsets and DC proportions in porcine neonate and adult blood by flow cytometry, which were plasmacytoid DCs (pDCs): CD14-CD4+CD172a+CADM1-) and conventional DCs (cDCs), being further divided into a cDC1 (CD14-CD4-CD172alowCADM1+) and a cDC2 (CD14-CD4-CD172a+CADM1+) subset. With neonatal cells, the TLR2 ligand induced a stronger TNF expression in monocytes and pDCs, and a stronger CD80/86 upregulation in cDC1, when compared to adult cells. Furthermore, in neonatal mononuclear cells TLR9 ligand was more potent at inducing IL12p40 mRNA expression. These results indicate clear responses of porcine neonatal antigen presenting cells after TLR2 and TLR9 stimulation, suggesting that corresponding ligands could be promising candidates for neonatal adjuvant application.


Assuntos
Células Dendríticas/imunologia , Interleucina-12/metabolismo , Suínos/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Animais Recém-Nascidos , Apresentação de Antígeno , Antígenos CD/metabolismo , Diferenciação Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo , Lipoproteínas/imunologia , Oligodesoxirribonucleotídeos/imunologia
15.
NPJ Vaccines ; 3: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302283

RESUMO

Inactivated vaccines lack immunogenicity and therefore require potent adjuvants. To understand the in vivo effects of adjuvants, we used a system immunology-based analysis of ovine blood transcriptional modules (BTMs) to dissect innate immune responses relating to either antibody or haptoglobin levels. Using inactivated foot-and-mouth disease virus as an antigen, we compared non-adjuvanted to liposomal-formulated vaccines complemented or not with TLR4 and TLR7 ligands. Early after vaccination, BTM relating to myeloid cells, innate immune responses, dendritic cells, and antigen presentation correlated positively, whereas BTM relating to T and natural killer cells, as well as cell cycle correlated negatively with antibody responses. Interestingly, similar BTM also correlated with haptoglobin, but in a reversed manner, indicating that acute systemic inflammation is not beneficial for early antibody responses. Analysis of vaccine-dependent BTM modulation showed that liposomal formulations induced similar responses to those correlating to antibody levels. Surprisingly, the addition of the TLR ligands appeared to reduce early immunological perturbations and mediated anti-inflammatory effects, despite promoting antibody responses. When pre-vaccination BTM were analyzed, we found that high vaccine responders expressed higher levels of many BTM relating to cell cycle, antigen-presenting cells, and innate responses as compared with low responders. In conclusion, we have transferred human BTM to sheep and identified early vaccine-induced responses associated with antibody levels or unwanted inflammation in a heterogeneous and small group of animals. Such readouts are applicable to other veterinary species and very useful to identify efficient vaccine adjuvants, their mechanism of action, and factors related to low responders.

16.
Microbes Infect ; 9(5): 574-82, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395519

RESUMO

Dendritic cells (DCs) play a key role in activating and orientating immune responses. Little is currently known about DC recruitment during Cryptosporidium parvum infection. In the intestine, epithelial cells act as sensors, providing the first signals in response to infection by enteric pathogens. We analyzed the contribution of these cells to the recruitment of DCs during cryptosporidiosis. We found that intestinal epithelial cells produced a broad range of DC-attracting chemokines in vitro in response to C. parvum infection. The supernatant of the infected cells induced the migration of both bone marrow-derived DCs (BMDC) and the SRDC lymphoid dendritic cell line. Chemokine neutralization abolished DC migration in these assays. We next analyzed chemokine mRNA expression in the mucosa of C. parvum-infected neonatal mice and recruitment of the various subsets of DCs. Myeloid (CD11c+ CD11b+) and double-negative DCs (CD11c+ CD11b- CD8alpha-) were the main subsets recruited in the ileum during C. parvum infection, via a mechanism involving IFNgamma. DCs were also recruited and activated in the draining lymph nodes during C. parvum infection, as shown by the upregulation of expression of MHC II and of the costimulation molecules CD40 and CD86.


Assuntos
Quimiocinas/biossíntese , Criptosporidiose/patologia , Cryptosporidium parvum/imunologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Animais , Animais Recém-Nascidos , Quimiocinas/genética , Criptosporidiose/imunologia , Células Epiteliais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
17.
PLoS One ; 11(5): e0156019, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27213692

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection.


Assuntos
Coinfecção/genética , Células Dendríticas/metabolismo , Inflamação/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Infecções Estreptocócicas/genética , Doenças dos Suínos/genética , Suínos/genética , Animais , Células Cultivadas , Coinfecção/imunologia , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular/genética , Inflamação/microbiologia , Inflamação/virologia , Mediadores da Inflamação/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Infecções Estreptocócicas/imunologia , Streptococcus suis/patogenicidade , Suínos/imunologia , Suínos/microbiologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/virologia , Regulação para Cima/genética
18.
Front Microbiol ; 7: 771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458429

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) represents a macrophage (MØ)-tropic virus which is unable to induce interferon (IFN) type I in its target cells. Nevertheless, infected pigs show a short but prominent systemic IFN alpha (IFN-α) response. A possible explanation for this discrepancy is the ability of plasmacytoid dendritic cells (pDC) to produce IFN-α in response to free PRRSV virions, independent of infection. Here, we show that the highly pathogenic PRRSV genotype 1 strain Lena is unique in not inducing IFN-α production in pDC, contrasting with systemic IFN-α responses found in infected pigs. We also demonstrate efficient pDC stimulation by PRRSV Lena-infected MØ, resulting in a higher IFN-α production than direct stimulation of pDC by PRRSV virions. This response was strain-independent, required integrin-mediated intercellular contact, intact actin filaments in the MØ and was partially inhibited by an inhibitor of neutral sphingomyelinase. Although infected MØ-derived exosomes stimulated pDC, an efficient delivery of the stimulatory component was dependent on a tight contact between pDC and the infected cells. In conclusion, with this mechanism the immune system can efficiently sense PRRSV, resulting in production of considerable quantities of IFN-α. This is adding complexity to the immunopathogenesis of PRRSV infections, as IFN-α should alert the immune system and initiate the induction of adaptive immune responses, a process known to be inefficient during infection of pigs.

19.
Cell Host Microbe ; 19(3): 409-23, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26962949

RESUMO

Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries, critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de-repression of cellular miR-17 targets, thereby altering the host transcriptome. These findings generalize the concept of RNA virus dependence on cellular miRNAs and connect virus-induced miRNA sequestration to host transcriptome regulation.


Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Animais , Linhagem Celular , Imunoprecipitação , Biossíntese de Proteínas , Estabilidade de RNA , Replicação Viral
20.
Annu Rev Anim Biosci ; 3: 533-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25387110

RESUMO

Dendritic cells (DC) have a main function in innate immunity in that they sense infections and environmental antigens at the skin and mucosal surfaces and thereby critically influence decisions about immune activation or tolerance. As professional antigen-presenting cells, they are essential for induction of adaptive immune responses. Consequently, knowledge on this cell type is required to understand the immune systems of veterinary mammals, including cattle, sheep, pigs, dogs, cats, and horses. Recent ontogenic studies define bona fide DC as an independent lineage of hematopoietic cells originating from a common precursor. Distinct transcription factors control the development into the two subsets of classical DC and plasmacytoid DC. These DC subsets express a distinguishable transcriptome, which differs from that of monocyte-derived DC. Using a comparative approach based on phenotype and function, this review attempts to classify DC of veterinary mammals and to describe important knowledge gaps.


Assuntos
Animais Domésticos/imunologia , Células Dendríticas/imunologia , Animais , Diferenciação Celular , Células Dendríticas/citologia , Imunidade Inata , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA