Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3636-3653, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321951

RESUMO

MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.


Assuntos
Epigênese Genética , Histonas , Proteína 2 de Ligação a Metil-CpG , Nucleossomos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Nucleossomos/metabolismo , Histonas/metabolismo , Humanos , Ligação Proteica , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Mutação , Animais
2.
Hum Mol Genet ; 33(1): 1-11, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37694858

RESUMO

MeCP2 (Methyl CpG binding protein 2) is an intrinsically disordered protein that binds to methylated genome regions. The protein is a critical transcriptional regulator of the brain, and its mutations account for 95% of Rett syndrome (RTT) cases. Early studies of this neurodevelopmental disorder revealed a close connection with dysregulations of the ubiquitin system (UbS), notably as related to UBE3A, a ubiquitin ligase involved in the proteasome-mediated degradation of proteins. MeCP2 undergoes numerous post-translational modifications (PTMs), including ubiquitination and sumoylation, which, in addition to the potential functional outcomes of their monomeric forms in gene regulation and synaptic plasticity, in their polymeric organization, these modifications play a critical role in proteasomal degradation. UbS-mediated proteasomal degradation is crucial in maintaining MeCP2 homeostasis for proper function and is involved in decreasing MeCP2 in some RTT-causing mutations. However, regardless of all these connections to UbS, the molecular details involved in the signaling of MeCP2 for its targeting by the ubiquitin-proteasome system (UPS) and the functional roles of monomeric MeCP2 ubiquitination and sumoylation remain largely unexplored and are the focus of this review.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sumoilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Síndrome de Rett/metabolismo , Ubiquitinação/genética , Ubiquitina/metabolismo
3.
Biochem Cell Biol ; 102(3): 285-290, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346284

RESUMO

Sperm nuclear basic proteins (SNBPs) were isolated from extracted antheridia-rich male gametophytes raised from spores of the swordfern, Polystichum munitum. Electrophoretic (acetic acid-urea PAGE and SDS-PAGE) and chromatographic (rp-HPLC) characterization of the nuclear proteins exhibited the characteristics of the histone (H-type). In both types of gel electrophoresis, histones H1, H2A, and H2B showed an altered electrophoretic mobility corresponding to that which is routinely observed for the histones in other plants. Histones present during spermatogenesis of the fern P. munitum were compared with the few current SNBPs known to be present in higher and lower evolutionary plant clades. A transition from an early protamine (P-type) SNBPs in charophytes and bryophytes to the (H-type) SNBP observed here is reminiscent of similar reversions observed in the animal kingdom.


Assuntos
Gleiquênias , Proteínas de Plantas , Gleiquênias/química , Gleiquênias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular
4.
Biochem Cell Biol ; 102(3): 238-251, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408323

RESUMO

Insects are the largest group of animals when it comes to the number and diversity of species. Yet, with the exception of Drosophila, no information is currently available on the primary structure of their sperm nuclear basic proteins (SNBPs). This paper represents the first attempt in this regard and provides information about six species of Neoptera: Poecillimon thessalicus, Graptosaltria nigrofuscata, Apis mellifera, Nasonia vitripennis, Parachauliodes continentalis, and Tribolium castaneum. The SNBPs of these species were characterized by acetic acid urea gel electrophoresis (AU-PAGE) and high-performance liquid chromatography fractionated. Protein sequencing was obtained using a combination of mass spectrometry sequencing, Edman N-terminal degradation sequencing and genome mining. While the SNBPs of several of these species exhibit a canonical arginine-rich protamine nature, a few of them exhibit a protamine-like composition. They appear to be the products of extensive cleavage processing from a precursor protein which are sometimes further processed by other post-translational modifications that are likely involved in the chromatin transitions observed during spermiogenesis in these organisms.


Assuntos
Sequência de Aminoácidos , Protaminas , Animais , Masculino , Protaminas/metabolismo , Protaminas/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Insetos/metabolismo , Dados de Sequência Molecular , Espermatozoides/metabolismo
5.
Bioessays ; 43(3): e2000281, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416207

RESUMO

Methyl CpG binding protein 2 (MeCP2) was initially isolated as an exclusive reader of DNA methylated at CpG. This recognition site, was subsequently extended to other DNA methylated residues and it has been the persisting dogma that binding to methylated DNA constitutes its physiologically relevant role. As we review here, two very recent papers fundamentally change our understanding of the interactions of this protein with chromatin, as well as its functional attributes. In the first one, the protein has been shown to bind to tri-methylated histone H3 (H3K27me3), providing a hint for what might turn out to be the first described chromodomain-containing protein reader in the animal kingdom, and unequivocally demonstrates the ability of MeCP2 to bind to nonmethylated CpG regions of the genome. The second paper reports how the protein dynamically participates in the formation of constitutive heterochromatin condensates. Histone H3K27me3 is a critical component of this form of chromatin.


Assuntos
Cromatina , Proteína 2 de Ligação a Metil-CpG , Animais , Cromatina/genética , DNA/genética , DNA/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Ligação Proteica
6.
Development ; 146(19)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558570

RESUMO

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.


Assuntos
Cromatina/genética , Evolução Molecular , Animais , Genoma , Humanos
7.
Nucleic Acids Res ; 47(16): 8399-8409, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31219579

RESUMO

Histone variants, present in various cell types and tissues, are known to exhibit different functions. For example, histone H3.3 and H2A.Z are both involved in gene expression regulation, whereas H2A.X is a specific variant that responds to DNA double-strand breaks. In this study, we characterized H4G, a novel hominidae-specific histone H4 variant. We found that H4G is expressed in a variety of human cell lines and exhibit tumor-stage dependent overexpression in tissues from breast cancer patients. We found that H4G localized primarily to the nucleoli of the cell nucleus. This localization was controlled by the interaction of the alpha-helix 3 of the histone fold motif with a histone chaperone, nucleophosmin 1. In addition, we found that modulating H4G expression affects rRNA expression levels, protein synthesis rates and cell-cycle progression. Our data suggest that H4G expression alters nucleolar chromatin in a way that enhances rDNA transcription in breast cancer tissues.


Assuntos
Neoplasias da Mama/genética , DNA Ribossômico/genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Proteínas Nucleares/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Feminino , Gorilla gorilla , Histonas/química , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Estadiamento de Neoplasias , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Pan troglodytes , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 294(44): 16364-16373, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527083

RESUMO

Protamines are small, highly-specialized, arginine-rich, and intrinsically-disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing. Here, we primarily used electron transfer dissociation MS-based analyses, revealing that the protamines in the sperm of the liverwort Marchantia polymorpha result from post-translational cleavage of three precursor H1 histones. Moreover, we show that the mature protamines are further post-translationally modified by di-aminopropanelation, and previous studies have reported that they condense spermatid chromatin through a process consisting of liquid-phase assembly likely involving spinodal decomposition. Taken together, our results reveal that the interesting evolutionary ancestry of protamines begins with histone H1 in both the animal and plant kingdoms.


Assuntos
Marchantia/metabolismo , Protaminas/metabolismo , Sequência de Aminoácidos/genética , Animais , Cromatina/metabolismo , Hepatófitas/metabolismo , Histonas/metabolismo , Masculino , Espectrometria de Massas/métodos , Protaminas/genética , Processamento de Proteína Pós-Traducional/fisiologia , Espermátides/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo
9.
J Cell Physiol ; 235(12): 9601-9608, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32385931

RESUMO

The hominidae-specific histone variant H4G is expressed in breast cancer patients in a stage-dependent manner. H4G localizes primarily in the nucleoli via its interaction with nucleophosmin (NPM1). H4G is involved in rDNA transcription and ribosome biogenesis, which facilitates breast cancer cell proliferation. However, the molecular mechanism underlying this process remains unknown. Here, we show that H4G is not stably incorporated into nucleolar chromatin, even with the chaperoning assistance of NPM1. H4G likely form transient nucleosome-like-structure that undergoes rapid dissociation. In addition, the nucleolar chromatin in H4GKO cells is more compact than WT cells. Altogether, our results suggest that H4G relaxes the nucleolar chromatin and enhances rRNA transcription by forming destabilized nucleosome in breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Histonas/genética , Proteínas Nucleares/genética , Transcrição Gênica , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Proliferação de Células/genética , Cromatina/genética , Cromatina/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Variação Genética/genética , Humanos , Nucleofosmina , Nucleossomos/genética , Nucleossomos/ultraestrutura , RNA Ribossômico/genética
10.
Hum Mol Genet ; 26(21): 4132-4141, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973632

RESUMO

Methyl CpG-binding protein 2 (MeCP2), the mutated protein in Rett syndrome (RTT), is a crucial chromatin-modifying and gene-regulatory protein that has two main isoforms (MeCP2_E1 and MeCP2_ E2) due to the alternative splicing and switching between translation start codons in exons one and two. Functionally, these two isoforms appear to be virtually identical; however, evidence suggests that only MeCP2_E1 is relevant to RTT, including a single RTT missense mutation in exon 1, Ala2Val. Here, we show that N-terminal co- and post-translational modifications differ for MeCP2_E1 and MeCP2_E1-Ala2Val, which result in different protein degradation rates in vitro. We report complete N-methionine excision (NME) for MeCP2_E1 and evidence of excision of multiple alanine residues from the N-terminal polyalanine stretch. For MeCP2_E1-Ala2Val, we observed only partial NME and N-acetylation (NA) of either methionine or valine. The localization of MeCP2_E1 and co-localization with chromatin appear to be unaffected by the Ala2Val mutation. However, a higher proteasomal degradation rate was observed for MeCP2_E1-Ala2Val compared with that for wild type MeCP2_E1. Thus, the etiopathology of Ala2Val is likely due to a reduced bio-availability of MeCP2 because of the faster degradation rate of the unmodified defective protein. Our data on the effects of the Ala2Val mutation on N-terminal modifications of MeCP2 may be applicable to Ala2Val mutations in other disease genes for which no etiopathological mechanism has been established.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Linhagem Celular , Éxons , Células HEK293 , Humanos , Camundongos , Mutação , Mutação de Sentido Incorreto , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , RNA Mensageiro/genética , Síndrome de Rett/genética , Transdução de Sinais
11.
Biochem Cell Biol ; 97(6): 777-782, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30974061

RESUMO

The 40th International Asilomar Chromatin, Chromosomes, and Epigenetics Conference was held in the Asilomar Conference Grounds, Pacific Grove, California, USA, on 6-9 December 2018. The organizing committee consisted of established scientists in the fields of chromatin and epigenetics: Sally Pasion and Michael Goldman from the Biology Department, San Francisco State University, California, USA; Philippe Georgel from the Department of Biological Sciences, Marshal University, West Virginia, USA; Juan Ausió from the Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada; and Christopher Eskiw from the Department of Biochemistry, University of Saskatchewan, Saskatchewan, Canada. The meeting had two keynote speakers: Jessica Tyler and Jennifer Mitchell, and it covered topics on transcription, replication and repair, epigenetics, cell differentiation and disease, telomeres, and centromeres and it had two sessions devoted to nuclear and genomic organization. It encompassed the enthusiastic presentations of excellent trainees within the breathtaking natural setting of Pacific Grove.


Assuntos
Cromossomos/genética , Epigenômica , California , Humanos
12.
Biochem Cell Biol ; 97(4): 431-436, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30605356

RESUMO

Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to ethanol and has been linked to neurodevelopmental impairments. Alcohol has the potential to alter some of the epigenetic components that play a critical role during development. Previous studies have provided evidence that prenatal exposure to ethanol results in abnormal epigenetic patterns (i.e., hypomethylation) of the genome. The aim of this study was to determine how prenatal exposure to ethanol in rats affects the hippocampal levels of expression of two important brain epigenetic transcriptional regulators involved in synaptic plasticity and memory consolidation: methyl CpG-binding protein 2 (MeCP2) and histone variant H2A.Z. Unexpectedly, under the conditions used in this work we were not able to detect any changes in MeCP2. Interestingly, however, we observed a significant decrease in H2A.Z, accompanied by its chromatin redistribution in both female and male FASD rat pups. Moreover, the data from reverse-transcription qPCR later confirmed that this decrease in H2A.Z is mainly due to down-regulation of its H2A.Z-2 isoform gene expression. Altogether, these data provide strong evidence that prenatal exposure to ethanol alters histone variant H2A.Z during neurogenesis of rat hippocampus.


Assuntos
Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Animais , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Perfilação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Ecotoxicol Environ Saf ; 169: 600-606, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30496991

RESUMO

Protamine-like proteins (PL-II, PL-III and PL-IV) represent the major basic nuclear component of Mytilus galloprovincialis L sperm chromatin. The present study investigates the effects induced on the properties of PL-II protein after exposure of Mytilus galloprovincialis L for 24 h to 1.5 and 5 µM CdCl2. We found cadmium accumulation in protamine-like proteins with a linear grow up with the exposition dose. In particular, after 5 µM CdCl2 mussels exposure, the mobility of PL-II band changed in SDS-PAGE, suggesting structural rearrangement in presence of cadmium. Structural analysis using fluorescent probes, indicated that at 5 µM CdCl2 the complete conformational change of PL-II protein was reached. In the same condition of mussels exposure of 5 µM CdCl2, PL-II protein changed its DNA binding mode, which determined a closer DNA binding, because higher amount of NaCl were required for PL-II protein release by sperm nuclei. These results supported the hypothesis that mussel exposure to this CdCl2 dose, although lower to toxic ones, affects the properties of this protein and as a consequence chromatin organization of spermatozoa that is essential for the success of fertilization.


Assuntos
Cádmio/toxicidade , Mytilus/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Espermatozoides/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Ligação a DNA , Eletroforese em Gel de Poliacrilamida , Masculino , Proteínas Nucleares/química , Conformação Proteica , Espermatozoides/metabolismo
14.
Bioessays ; 38(3): 226-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709929

RESUMO

The DNase I hypersensitive sites (DHSs) of chromatin constitute one of the best landmarks of eukaryotic genes that are poised and/or activated for transcription. For over 35 years, the high-mobility group nucleosome-binding chromosomal proteins HMGN1 and HMGN2 have been shown to play a role in the establishment of these chromatin-accessible domains at transcriptional regulatory elements, namely promoters and enhancers. The critical presence of HMGNs at enhancers, as highlighted by a recent publication, suggests a role for them in the structural and functional fine-tuning of the DHSs in vertebrates. As we review here, while preferentially out-competing histone H1 binding and invading neighbor nucleosomes, HMGNs may also modulate histone H3 at serine 10 (H3S10ph), which plays an important role in enhancer function and transcriptional initiation.


Assuntos
Elementos Facilitadores Genéticos , Proteínas HMGN/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Transcrição Gênica
15.
J Biol Chem ; 291(4): 1789-1802, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26559976

RESUMO

Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos da radiação , Cromatina/metabolismo , Cromatina/efeitos da radiação , Histonas/metabolismo , Animais , Linhagem Celular , Dano ao DNA/efeitos da radiação , Reparo do DNA , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Lasers , Camundongos , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
16.
Biochem Cell Biol ; 95(6): 593-608, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28796949

RESUMO

This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/genética , Inativação Gênica , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética
17.
Bioessays ; 37(1): 46-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25328133

RESUMO

The chromatin fiber consists of a string of nucleosomes connected by linker DNA regions. The hierarchy of folding of this fiber within the cell has long been controversial, and the existence of an originally described 30 nm fiber has been debated and reviewed extensively. This review contextualizes two recent papers on this topic that suggest the 30 nm fiber to be an over-simplification. The idealized model from the first study provides good insight into the constraints and histone participation in the maintenance of the fiber structure. The second paper provides a theoretical description of a more realistic view of the highly heterogeneous and dynamic chromatin organization in the in vivo setting. It is now time to abandon the highly regular "one start" solenoidal 30 nm structure and replace it with a more realistic highly dynamic, polymorphic fiber.


Assuntos
Cromatina/química , Animais , Humanos , Masculino , Modelos Biológicos , Espermatozoides/metabolismo
18.
Adv Exp Med Biol ; 978: 3-21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523538

RESUMO

From an epigenetic perspective, the genomic chromatin organization of neurons exhibits unique features when compared to somatic cells. Methyl CpG binding protein 2 (MeCP2), through its ability to bind to methylated DNA, seems to be a major player in regulating such unusual organization. An important contribution to this uniqueness stems from the intrinsically disordered nature of this highly abundant chromosomal protein in neurons. Upon its binding to methylated/hydroxymethylated DNA, MeCP2 is able to recruit a plethora of interacting protein and RNA partners. The final outcome is a highly specialized chromatin organization wherein linker histones (histones of the H1 family) and MeCP2 share an organizational role that dynamically changes during neuronal development and that it is still poorly understood. MeCP2 mutations alter its chromatin-binding dynamics and/or impair the ability of the protein to interact with some of its partners, resulting in Rett syndrome (RTT). Therefore, deciphering the molecular details involved in the MeCP2 neuronal chromatin arrangement is critical for our understanding of the proper and altered functionality of these cells.


Assuntos
Cromatina/ultraestrutura , Metilação de DNA , Epigênese Genética/genética , Proteína 2 de Ligação a Metil-CpG/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese , Neurônios/metabolismo , Síndrome de Rett/genética , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos X/genética , Ilhas de CpG/genética , Genes Ligados ao Cromossomo X , Código das Histonas/genética , Código das Histonas/fisiologia , Histonas/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/ultraestrutura , RNA/metabolismo
19.
Mol Biol Evol ; 32(1): 121-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281808

RESUMO

High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance-most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates.


Assuntos
Cromatina/metabolismo , Proteínas HMGN/química , Proteínas HMGN/genética , Vertebrados/metabolismo , Animais , Evolução Molecular , Proteínas HMGN/metabolismo , Humanos , Modelos Moleculares , Filogenia , Seleção Genética , Vertebrados/genética
20.
Biochem Cell Biol ; 94(5): 480-490, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27617756

RESUMO

Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.


Assuntos
Centro Germinativo/metabolismo , Mytilus/metabolismo , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Histonas/metabolismo , Mutação/genética , Mytilus/genética , Filogenia , Conformação Proteica , Proteínas/química , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA