Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 110(5): 663-8, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22298808

RESUMO

RATIONALE: Catecholaminergic polymorphic ventricular tachycardia is an inherited disease that predisposes to cardiac arrest and sudden death. The disease is associated with mutations in the genes encoding for the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2). CASQ2 mutations lead to a major loss of CASQ2 monomers, possibly because of enhanced degradation of the mutant protein. The decrease of CASQ2 is associated with a reduction in the levels of Triadin (TrD) and Junctin (JnC), two proteins that form, with CASQ2 and RyR2, a macromolecular complex devoted to control of calcium release from the sarcoplasmic reticulum. OBJECTIVE: We intended to evaluate whether viral gene transfer of wild-type CASQ2 may rescue the broad spectrum of abnormalities caused by mutant CASQ2. METHODS AND RESULTS: We used an adeno-associated serotype 9 viral vector to express a green fluorescent protein-tagged CASQ2 construct. Twenty weeks after intraperitoneal injection of the vector in neonate CASQ2 KO mice, we observed normalization of the levels of calsequestrin, triadin, and junctin, rescue of electrophysiological and ultrastructural abnormalities caused by CASQ2 ablation, and lack of life-threatening arrhythmias. CONCLUSIONS: We have proven the concept that induction of CASQ2 expression in knockout mice reverts the molecular, structural, and electric abnormalities and prevents life-threatening arrhythmias in CASQ2-defective catecholaminergic polymorphic ventricular tachycardia mice. These data support the view that development of CASQ2 viral gene transfer could have clinical application.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Calsequestrina/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Miócitos Cardíacos/ultraestrutura , Fenótipo , Animais , Arritmias Cardíacas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calsequestrina/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Ventrículos do Coração/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/metabolismo , Proteínas Musculares/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologia
2.
Circ Res ; 109(3): 291-5, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21680895

RESUMO

RATIONALE: Flecainide prevents arrhythmias in catecholaminergic polymorphic ventricular tachycardia, but the antiarrhythmic mechanism remains unresolved. It is possible for flecainide to directly affect the cardiac ryanodine receptor (RyR2); however, an extracellular site of action is suggested because of the hydrophilic nature of flecainide. OBJECTIVE: To investigate the mechanism for the antiarrhythmic action of flecainide in a RyR2(R4496C+/-) knock-in mouse model of catecholaminergic polymorphic ventricular tachycardia. METHODS AND RESULTS: Flecainide prevented catecholamine-induced sustained ventricular tachycardia in RyR2(R4496C+/-) mice. Cellular studies were performed with isolated RyR2(R4496C+/-) myocytes. Isoproterenol caused the appearance of spontaneous Ca(2+) transients, which were unaffected by flecainide (6 µmol/L). Flecainide did not affect Ca(2+) transient amplitude, decay, or sarcoplasmic reticulum Ca(2+) content. Moreover, it did not affect the frequency of spontaneous Ca(2+) sparks in permeabilized myocytes. In contrast, flecainide effectively prevented triggered activity induced by isoproterenol. The threshold for action potential induction was increased significantly (P<0.01), which suggests a primary extracellular antiarrhythmic effect mediated by Na(+) channel blockade. CONCLUSIONS: Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in RyR2(R4496C+/-) mice; however, at variance with previous reports, we observed minimal effects on intracellular Ca(2+) homeostasis. Our data suggest that the antiarrhythmic activity of the drug is caused by reduction of Na(+) channel availability and by an increase in the threshold for triggered activity.


Assuntos
Antiarrítmicos/farmacologia , Flecainida/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/prevenção & controle , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Modelos Animais de Doenças , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/fisiologia , Técnicas de Introdução de Genes , Isoproterenol/farmacologia , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/fisiologia , Canais de Sódio/fisiologia , Simpatomiméticos/farmacologia , Taquicardia Ventricular/genética
3.
BMC Surg ; 13 Suppl 2: S40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24266895

RESUMO

BACKGROUND: Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca²âº entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca²âº inflow is, however, unknown. METHODS: In this study, we sought to determine whether and how endothelial scraping induces NO production (NOP) in the endothelium of excised rat aorta by exploiting the NO-sensitive fluorochrome, DAF-FM diacetate and the Ca²âº-sensitive fluorescent dye, Fura-2/AM. RESULTS: We demonstrated that injury-induced NOP at the lesion site is prevented in presence of the endothelial NO synthase inhibitor, L-NAME, and in absence of extracellular Ca²âº. Unlike ATP-dependent NO liberation, the NO response to injury is insensitive to BTP-2, which selectively blocks store-operated Ca²âº inflow. However, injury-induced NOP is significantly reduced by classic gap junction blockers, and by connexin mimetic peptides specifically targeting Cx37Hcs, Cx40HCs, and Cx43Hcs. Moreover, disruption of caveolar integrity prevents injury-elicited NO signaling, but not the accompanying Ca²âº response. CONCLUSIONS: The data presented provide the first evidence that endothelial scraping stimulates NO synthesis at the wound edge, which might both exert an immediate anti-thrombotic and anti-inflammatory action and promote the subsequent re-endothelialization.


Assuntos
Aorta/metabolismo , Prótese Vascular , Cálcio/fisiologia , Endotélio Vascular/metabolismo , Óxido Nítrico/biossíntese , Fatores Etários , Idoso , Animais , Aorta/cirurgia , Endotélio Vascular/lesões , Humanos , Ratos , Ratos Wistar
4.
Front Cell Dev Biol ; 10: 991659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120576

RESUMO

Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has long been known that histamine receptor 1 (H1R) mediates the effects of histamine on human pulmonary fibroblasts through an increase in intracellular Ca2+ concentration ([Ca2+]i), but the underlying signaling mechanisms are still unknown. Herein, we exploited single-cell Ca2+ imaging to assess the signal transduction pathways whereby histamine generates intracellular Ca2+ signals in the human fetal lung fibroblast cell line, WI-38. WI-38 fibroblasts were loaded with the Ca2+-sensitive fluorophore, FURA-2/AM, and challenged with histamine in the absence and presence of specific pharmacological inhibitors to dissect the Ca2+ release/entry pathways responsible for the onset of the Ca2+ response. Histamine elicited complex intracellular Ca2+ signatures in WI-38 fibroblasts throughout a concentration range spanning between 1 µM and 1 mM. In accord, the Ca2+ response to histamine adopted four main temporal patterns, which were, respectively, termed peak, peak-oscillations, peak-plateau-oscillations, and peak-plateau. Histamine-evoked intracellular Ca2+ signals were abolished by pyrilamine, which selectively blocks H1R, and significantly reduced by ranitidine, which selectively inhibits H2R. Conversely, the pharmacological blockade of H3R and H4R did not affect the complex increase in [Ca2+]i evoked by histamine in WI-38 fibroblasts. In agreement with these findings, histamine-induced intracellular Ca2+ signals were initiated by intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3R) and sustained by store-operated Ca2+ channels (SOCs). Conversely, L-type voltage-operated Ca2+ channels did not support histamine-induced extracellular Ca2+ entry. A preliminary transcriptomic analysis confirmed that WI-38 human lung fibroblasts express all the three InsP3R isoforms as well as STIM2 and Orai3, which represent the molecular components of SOCs. The pharmacological blockade of InsP3 and SOC, therefore, could represent an alternative strategy to prevent the pernicious effects of histamine on lung fibroblasts in asthmatic patients.

5.
Tissue Barriers ; 10(2): 1994351, 2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-34689705

RESUMO

ZO-2 is a peripheral tight junction (TJ) protein whose silencing in renal epithelia induces cell hypertrophy. Here, we found that in ZO-2 KD MDCK cells, in compensatory renal hypertrophy triggered in rats by a unilateral nephrectomy and in liver steatosis of obese Zucker (OZ) rats, ZO-2 silencing is accompanied by the diminished activity of LATS, a kinase of the Hippo pathway, and the nuclear concentration of YAP, the final effector of this signaling route. ZO-2 appears to function as a scaffold for the Hippo pathway as it associates to LATS1. ZO-2 silencing in hypertrophic tissue is due to a diminished abundance of ZO-2 mRNA, and the Sp1 transcription factor is critical for ZO-2 transcription in renal cells. Treatment of OZ rats with metformin, an activator of AMPK that blocks JNK activity, augments ZO-2 and claudin-1 expression in the liver, reduces the paracellular permeability of hepatocytes, and serum bile acid content. Our results suggest that ZO-2 silencing is a common feature of hypertrophy, and that ZO-2 is a positive regulator of the Hippo pathway that regulates cell size. Moreover, our observations highlight the importance of AMPK, JNK, and ZO-2 as therapeutic targets for blood-bile barrier dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Fígado Gorduroso , Proteína da Zônula de Oclusão-2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Via de Sinalização Hippo , Hipertrofia , Ratos , Ratos Zucker , Proteínas de Junções Íntimas
6.
J Vasc Res ; 46(1): 73-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18577871

RESUMO

The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores.


Assuntos
Sinalização do Cálcio/fisiologia , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Detecção de Cálcio/genética , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Estrenos/farmacologia , Gadolínio/farmacologia , Indóis/farmacologia , Lantânio/farmacologia , Meglumina/farmacologia , Neomicina/farmacologia , Fenilalanina/farmacologia , Pirrolidinonas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/agonistas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/fisiologia , Espermina/farmacologia , Triptofano/farmacologia , Fosfolipases Tipo C/fisiologia
7.
Cell Calcium ; 44(3): 298-309, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18276005

RESUMO

The inner wall of excised rat aorta was scraped by a microelectrode and Ca2+ signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca2+ concentration ([Ca2+]i), followed by a long-lasting decay phase due to Ca2+ influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P2X and P2Y receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca2+ influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La3+ and Ni2+, but not to Gd3+. Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca2+ entry.


Assuntos
Sinalização do Cálcio/fisiologia , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Aorta Abdominal/citologia , Aorta Torácica/citologia , Endotélio Vascular/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Ratos , Receptores Purinérgicos P2/metabolismo , Suramina/farmacologia
8.
PLoS One ; 8(11): e76534, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250786

RESUMO

In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of "metabolic syndrome rats", compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats.


Assuntos
Arritmias Cardíacas/fisiopatologia , Remodelamento Atrial/fisiologia , Síndrome Metabólica/fisiopatologia , Nó Sinoatrial/fisiologia , Animais , Arritmias Cardíacas/etiologia , Eletrocardiografia , Humanos , Masculino , Síndrome Metabólica/complicações , Técnicas de Patch-Clamp , Ratos
9.
Stem Cells Dev ; 19(12): 1967-81, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20677912

RESUMO

Endothelial progenitor cells (EPCs) may be recruited from the bone marrow to sites of tissue regeneration to sustain neovascularization and reendothelialization after acute vascular injury. This feature makes them particularly suitable for cell-based therapy. In mature endothelium, store-operated Ca(2+) entry (SOCE) is activated following emptying of inositol-1,4,5-trisphosphate-sensitive stores, and controls a wide number of functions, including proliferation, nitric oxide synthesis, and vascular permeability. The present work aimed at investigating SOCE expression in EPCs harvested from both peripheral blood (PB-EPCs) and umbilical cord blood (UCB-EPCs) by employing both Ca(2+) imaging and molecular biology techniques. SOCE was induced upon either pharmacological (ie, cyclopiazonic acid) or physiological (ie, ATP) depletion of the intracellular Ca(2+) pool. Further, store-dependent Ca(2+) entry was inhibited by the SOCE inhibitor, N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2). Real-time reverse transcription-polymerase chain reaction and western blot analyses showed that both PB-EPCs and UCB-EPCs express all the molecular candidates to mediate SOCE in differentiated cells, including TRPC1, TRPC4, Orai1, and Stim1. Moreover, pharmacological maneuvers demonstrated that, as well as in differentiated endothelial cells, the signal transduction pathway leading to depletion of the intracellular Ca(2+) pool impinged on the phospholipase C/inositol-1,4,5-trisphosphate pathway. Finally, blockage of SOCE with BTP-2 impaired PB-EPC proliferation. These findings provide the first evidence that EPCs express SOCE, which might thus be regarded as a novel target to enhance the regenerative outcome of cell-based therapy.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Células Endoteliais/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Anilidas/metabolismo , Anilidas/farmacologia , Western Blotting , Canais de Cálcio/genética , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia , Fosfolipases Tipo C/metabolismo , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA