Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385882

RESUMO

Increasing evidence suggests that microbial species have a strong within species genetic heterogeneity. This can be problematic for the analysis of prokaryote genomes, which commonly relies on a reference genome to guide the assembly process. Differences between reference and sample genomes will therefore introduce errors in final assembly, jeopardizing the detection from structural variations to point mutations-critical for genomic surveillance of antibiotic resistance. Here we present Hound, a pipeline that integrates publicly available tools to assemble prokaryote genomes de novo, detect user-given genes by similarity to report mutations found in the coding sequence, promoter, as well as relative gene copy number within the assembly. Importantly, Hound can use the query sequence as a guide to merge contigs, and reconstruct genes that were fragmented by the assembler. To showcase Hound, we screened through 5032 bacterial whole-genome sequences isolated from farmed animals and human infections, using the amino acid sequence encoded by blaTEM-1, to detect and predict resistance to amoxicillin/clavulanate which is driven by over-expression of this gene. We believe this tool can facilitate the analysis of prokaryote species that currently lack a reference genome, and can be scaled either up to build automated systems for genomic surveillance or down to integrate into antibiotic susceptibility point-of-care diagnostics.


Assuntos
Genoma Bacteriano , Genômica , Animais , Humanos , Genótipo , Fenótipo , Dosagem de Genes
2.
PLoS Pathog ; 20(6): e1012235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843111

RESUMO

Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.


Assuntos
Antibacterianos , Elementos de DNA Transponíveis , Humanos , Antibacterianos/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Piperacilina/farmacologia , Amicacina/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Integrons/genética , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/genética
3.
Antimicrob Agents Chemother ; 68(7): e0024224, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38767379

RESUMO

Nitrofurantoin resistance in Escherichia coli is primarily caused by mutations damaging two enzymes, NfsA and NfsB. Studies based on small isolate collections with defined nitrofurantoin MICs have found significant random genetic drift in nfsA and nfsB, making it extremely difficult to predict nitrofurantoin resistance from whole-genome sequence (WGS) where both genes are not obviously disrupted by nonsense or frameshift mutations or insertional inactivation. Here, we report a WGS survey of 200 oqxAB-negative E. coli from community urine samples, of which 34 were nitrofurantoin resistant. We characterized individual non-synonymous mutations seen in nfsA and nfsB among this collection using complementation cloning and NfsA/B enzyme assays in cell extracts. We definitively identified R203C, H11Y, W212R, A112E, and A112T in NfsA and R121C, Q142H, F84S, P163H, W46R, K57E, and V191G in NfsB as amino acid substitutions that reduce enzyme activity sufficiently to cause resistance. In contrast, E58D, I117T, K141E, L157F, A172S, G187D, and A188V in NfsA and G66D, M75I, V93A, and A174E in NfsB are functionally silent in this context. We identified that 9/166 (5.4%) nitrofurantoin-susceptible isolates were "pre-resistant," defined as having loss of function mutations in nfsA or nfsB. Finally, using NfsA/B enzyme assays and proteomics, we demonstrated that 9/34 (26.5%) ribE wild-type nitrofurantoin-resistant isolates also carried functionally wild-type nfsB or nfsB/nfsA. In these cases, NfsA/B activity was reduced through downregulated gene expression. Our biological understanding of nitrofurantoin resistance is greatly improved by this analysis but is still insufficient to allow its reliable prediction from WGS data.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Nitrofurantoína , Nitrorredutases , Sequenciamento Completo do Genoma , Nitrofurantoína/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Sequenciamento Completo do Genoma/métodos , Nitrorredutases/genética , Nitrorredutases/metabolismo , Farmacorresistência Bacteriana/genética , Mutação , Humanos , Anti-Infecciosos Urinários/farmacologia , Antibacterianos/farmacologia , Genoma Bacteriano/genética
4.
Appl Environ Microbiol ; 90(3): e0179123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334306

RESUMO

Control measures are being introduced globally to reduce the prevalence of antibiotic resistance (ABR) in bacteria on farms. However, little is known about the current prevalence and molecular ecology of ABR in bacterial species with the potential to be key opportunistic human pathogens, such as Escherichia coli, on South American farms. Working with 30 dairy cattle farms and 40 pig farms across two provinces in central-eastern Argentina, we report a comprehensive genomic analysis of third-generation cephalosporin-resistant (3GC-R) E. coli, which were recovered from 34.8% (cattle) and 47.8% (pigs) of samples from fecally contaminated sites. Phylogenetic analysis revealed substantial diversity suggestive of long-term horizontal and vertical transmission of 3GC-R mechanisms. CTX-M-15 and CTX-M-2 were more often produced by isolates from dairy farms, while CTX-M-8 and CMY-2 and co-carriage of amoxicillin/clavulanate resistance and florfenicol resistance were more common in isolates from pig farms. This suggests different selective pressures for antibiotic use in these two animal types. We identified the ß-lactamase gene blaROB, which has previously only been reported in the family Pasteurellaceae, in 3GC-R E. coli. blaROB was found alongside a novel florfenicol resistance gene, ydhC, also mobilized from a pig pathogen as part of a new composite transposon. As the first comprehensive genomic survey of 3GC-R E. coli in Argentina, these data set a baseline from which to measure the effects of interventions aimed at reducing on-farm ABR and provide an opportunity to investigate the zoonotic transmission of resistant bacteria in this region. IMPORTANCE: Little is known about the ecology of critically important antibiotic resistance among bacteria with the potential to be opportunistic human pathogens (e.g., Escherichia coli) on South American farms. By studying 70 pig and dairy cattle farms in central-eastern Argentina, we identified that third-generation cephalosporin resistance (3GC-R) in E. coli was mediated by mechanisms seen more often in certain species and that 3GC-R pig E. coli were more likely to be co-resistant to florfenicol and amoxicillin/clavulanate. This suggests that on-farm antibiotic usage is key to selecting the types of E. coli present on these farms. 3GC-R E. coli and 3GC-R plasmids were diverse, suggestive of long-term circulation in this region. We identified the de novo mobilization of the resistance gene blaROB from pig pathogens into E. coli on a novel mobile genetic element, which shows the importance of surveying poorly studied regions for antibiotic resistance that might impact human health.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Tianfenicol/análogos & derivados , Animais , Humanos , Suínos , Bovinos , Escherichia coli/metabolismo , Fazendas , Cefalosporinas/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Genômica , Amoxicilina , Ácido Clavulânico
5.
J Antimicrob Chemother ; 78(7): 1667-1671, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37248666

RESUMO

OBJECTIVES: Zoos are environments where species of highly valued animals are kept largely separated from others and the wider world. We report the molecular ecology of critically important antibiotic resistant (ABR) Escherichia coli carried by 28 mammalian species housed in a zoo located in an urban residential district. METHODS: Over 3 months we collected 167 faecal samples from captive mammals and processed for E. coli resistant to third-generation cephalosporins (3GC-R) and fluoroquinolones (FQ-R). Isolates were sequenced using Illumina. RESULTS: We identified high rates of faecal sample-level positivity, with 50%, 57% and 36% of mammalian species excreting 3GC-R, FQ-R or dual 3GC-R/FQ-R E. coli, respectively. Isolates represented multiple ST and ABR mechanisms; CTX-M-15 and CMY-2 dominated for 3GC-R, and target-site mutation caused 75% of FQ-R. We identified multiple examples of ABR E. coli transmission between mammalian species in separate enclosures, and a variant of the epidemic plasmid pCT within the zoo. There was no evidence for ABR E. coli leaving the zoo, based on comparative analysis with E. coli from humans, cattle and dogs isolated from the 50 × 50 km region in which the zoo is located. Amoxicillin/clavulanate was the most widely used antibiotic in the zoo, and we identified four widely disseminated amoxicillin/clavulanate resistance mechanisms, including a previously unreported inhibitor-resistant TEM, and the carbapenemase OXA-181. CONCLUSIONS: We conclude that the zoo studied here is a 'melting pot' for the selection and circulation of 3GC-R and FQ-R E. coli, but these circulating E. coli appear captive within the zoo.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Humanos , Animais , Bovinos , Cães , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Cefalosporinas , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , beta-Lactamases/genética , Combinação Amoxicilina e Clavulanato de Potássio , Mamíferos
6.
Antimicrob Agents Chemother ; 66(4): e0217921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35293781

RESUMO

We show that a previously described Klebsiella pneumoniae variant that is resistant to ceftazidime-avibactam plus meropenem-vaborbactam, has a ramR plus ompK36 mutation, and produces the V239G variant KPC-3 (V240G per the standard numbering system) exhibits resistance to ceftazidime-avibactam plus aztreonam and imipenem-relebactam but not cefepime-taniborbactam. The V239G variant does not generate collateral ß-lactam susceptibility like many KPC-3 variants associated with ceftazidime-avibactam resistance. Additional mutation of ompK35 and production of the OXA-48-like carbapenemase OXA-232 were required to confer cefepime-taniborbactam resistance.


Assuntos
Aztreonam , Klebsiella pneumoniae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Proteínas de Bactérias/genética , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , Cefepima/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Imipenem/farmacologia , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
7.
J Antimicrob Chemother ; 77(9): 2399-2405, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35858661

RESUMO

OBJECTIVES: To compare faecal third-generation cephalosporin-resistant (3GC-R) Escherichia coli isolates from dogs living in a city and in a rural area ∼30 km away; to compare isolates from dogs, cattle and humans in these regions; and to determine risk factors associated with 3GC-R E. coli carriage in these two cohorts of dogs. METHODS: Six hundred dogs were included, with faecal samples processed to recover 3GC-R E. coli using 2 mg/L cefotaxime. WGS was by Illumina and risk factor analyses were by multivariable linear regression using the results of an owner-completed survey. RESULTS: 3GC-R E. coli were excreted by 20/303 rural and 31/297 urban dogs. The dominant canine 3GC-R ST was ST963 (blaCMY-2), which also accounted for 25% of CMY-2-producing E. coli in humans. Phylogenetic overlap between cattle and rural dog CTX-M-14-producing E. coli ST117 was observed as well as acquisition of pMOO-32-positive E. coli ST10 by a rural dog, a plasmid common on cattle farms in the area. Feeding raw meat was associated with carrying 3GC-R E. coli in rural dogs, but not in urban dogs, where swimming in rivers was a weak risk factor. CONCLUSIONS: Given clear zoonotic potential for resistant canine E. coli, our work suggests interventions that may reduce this threat. In rural dogs, carriage of 3GC-R E. coli, particularly CTX-M producers, was phylogenetically associated with interaction with local cattle and epidemiologically associated with feeding raw meat. In urban dogs, sources of 3GC-R E. coli appear to be more varied and include environments such as rivers.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Cefalosporinas/farmacologia , Cães , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Humanos , Filogenia , Fatores de Risco , beta-Lactamases/genética
8.
J Appl Microbiol ; 132(4): 2633-2641, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34923720

RESUMO

AIMS: To investigate whether on-farm antibacterial usage (ABU), environmental antibacterial-resistant (ABR) Escherichia coli prevalence, sampling and sample handling methodologies are associated with ABR E. coli positivity in individual faecal samples from dairy heifers. METHODS AND RESULTS: Three hundred and sixty-four heifers from 37 farms were sampled via rectal or faecal pat sampling. Samples were stored at -80°C for variable periods before microbiological analysis. Data analysis was done through a multilevel, multivariable logistic regression approach. Individual rectal samples had increased odds of positivity for amoxicillin-, cefalexin- and tetracycline-resistant E. coli. Sample storage for 6-12 months was associated with decreased odds of finding amoxicillin- and tetracycline-resistant E. coli. On-farm ABU had little influence, and environmental ABR E. coli prevalence had no significant influence on the odds of sample-level positivity for ABR E. coli. CONCLUSIONS: Sampling methodology and sample handling have a greater association than on-farm factors with the detection of ABR E. coli in individual faecal samples from dairy heifers. SIGNIFICANCE AND IMPACT OF THE STUDY: Sampling and storage methodologies should be considered carefully at the point of designing ABR surveillance studies in livestock and their environments and, where possible, these methodologies should be standardized between and within future studies.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/microbiologia , Indústria de Laticínios , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Feminino , Tetraciclina
9.
Mol Microbiol ; 113(2): 492-503, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31773806

RESUMO

The ß-lactam antibiotic ceftazidime is one of the handful of drugs with proven clinical efficacy against the important opportunistic human pathogen Stenotrophomonas maltophilia. Here, we show that mutations in the energy transducer TonB, encoded by smlt0009 in S. maltophilia, confer ceftazidime resistance and smlt0009 mutants have reduced uptake of ceftazidime. This breaks the dogma that ß-lactams enter Gram-negative bacteria only by passive diffusion through outer membrane porins. We also show that ceftazidime-resistant TonB mutants are cross-resistant to fluoroquinolone antimicrobials and a siderophore-conjugated lactivicin antibiotic designed to target TonB-dependent uptake. This implies that attempts to improve the penetration of antimicrobials into S. maltophilia by conjugating them with TonB substrates will suffer from the fact that ß-lactams and fluoroquinolones coselect resistance to these novel and otherwise promising antimicrobials. Finally, we show that smlt0009 mutants already exist among S. maltophilia clinical isolates and have reduced susceptibility to siderophore-conjugated lactivicin, despite the in vitro growth impairment seen in smlt0009 mutants selected in the laboratory.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Proteínas de Membrana/genética , Stenotrophomonas maltophilia/efeitos dos fármacos , beta-Lactamas/farmacologia , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Peptídeos Cíclicos/farmacologia , Sideróforos/farmacologia
10.
Antimicrob Agents Chemother ; 65(11): e0100421, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460299

RESUMO

Cefalexin is a widely used first-generation cephalosporin, and resistance in Escherichia coli is caused by extended-spectrum (e.g., CTX-M) and AmpC ß-lactamase production and therefore frequently coincides with third-generation cephalosporin resistance. However, we have recently identified large numbers of E. coli isolates from human infections, and from cattle, where cefalexin resistance is not ß-lactamase mediated. Here, we show, by studying laboratory-selected mutants, clinical isolates, and isolates from cattle, that OmpF porin disruption or downregulation is a major cause of cefalexin resistance in E. coli. Importantly, we identify multiple regulatory mutations that cause OmpF downregulation. In addition to mutation of ompR, already known to downregulate OmpF and OmpC porin production, we find that rseA mutation, which strongly activates the sigma E regulon, greatly increases DegP production, which degrades OmpF, OmpC, and OmpA. Furthermore, we reveal that mutations affecting lipopolysaccharide structure, exemplified by the loss of GmhB, essential for lipopolysaccharide heptosylation, also modestly activate DegP production, resulting in OmpF degradation. Remarkably, given the critical importance attached to such systems for normal E. coli physiology, we find evidence for DegP-mediated OmpF downregulation and gmhB and rseA loss-of-function mutation in E. coli isolates derived from human infections. Finally, we show that these regulatory mutations enhance the ability of group 1 CTX-M ß-lactamase to confer reduced carbapenem susceptibility, particularly those mutations that cause OmpC in addition to OmpF downregulation.


Assuntos
Proteínas da Membrana Bacteriana Externa , Cefalexina , Farmacorresistência Bacteriana/genética , Escherichia coli , Porinas/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Carbapenêmicos , Bovinos , Cefalexina/farmacologia , Regulação para Baixo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
11.
Antimicrob Agents Chemother ; 65(8): e0241220, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33972250

RESUMO

Meropenem is a clinically important antibacterial reserved for treatment of multiresistant infections. In meropenem-resistant bacteria of the family Enterobacterales, NDM-1 is considerably more common than IMP-1, despite both metallo-ß-lactamases (MBLs) hydrolyzing meropenem with almost identical kinetics. We show that blaNDM-1 consistently confers meropenem resistance in wild-type Enterobacterales, but blaIMP-1 does not. The reason is higher blaNDM-1 expression because of its stronger promoter. However, the cost of meropenem resistance is reduced fitness of blaNDM-1-positive Enterobacterales. In parallel, from a clinical case, we identified multiple Enterobacter spp. isolates carrying a plasmid-encoded blaNDM-1 having a modified promoter region. This modification lowered MBL production to a level associated with zero fitness cost, but, consequently, the isolates were not meropenem resistant. However, we identified a Klebsiella pneumoniae isolate from this same clinical case carrying the same blaNDM-1 plasmid. This isolate was meropenem resistant despite low-level NDM-1 production because of a ramR mutation reducing envelope permeability. Overall, therefore, we show how the resistance/fitness trade-off for MBL carriage can be resolved. The result is sporadic emergence of meropenem resistance in a clinical setting.


Assuntos
Microbioma Gastrointestinal , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
12.
J Antimicrob Chemother ; 76(3): 587-595, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33338207

RESUMO

OBJECTIVES: To measure the variability in carbapenem susceptibility conferred by different OxaAb variants, characterize the molecular evolution of oxaAb and elucidate the contribution of OxaAb and other possible carbapenem resistance factors in the clinical isolates using WGS and LC-MS/MS. METHODS: Antimicrobial susceptibility tests were performed on 10 clinical Acinetobacter baumannii isolates. Carbapenem MICs were evaluated for all oxaAb variants cloned into A. baumannii CIP70.10 and BM4547, with and without their natural promoters. Molecular evolution analysis of the oxaAb variants was performed using FastTree and SplitsTree4. Resistance determinants were studied in the clinical isolates using WGS and LC-MS/MS. RESULTS: Only the OxaAb variants with I129L and L167V substitutions, OxaAb(82), OxaAb(83), OxaAb(107) and OxaAb(110) increased carbapenem MICs when expressed in susceptible A. baumannii backgrounds without an upstream IS element. Carbapenem resistance was conferred with the addition of their natural upstream ISAba1 promoter. LC-MS/MS analysis on the original clinical isolates confirmed overexpression of the four I129L and L167V variants. No other differences in expression levels of proteins commonly associated with carbapenem resistance were detected. CONCLUSIONS: Elevated carbapenem MICs were observed by expression of OxaAb variants carrying clinically prevalent substitutions I129L and L167V. To drive carbapenem resistance, these variants required overexpression by their upstream ISAba1 promoter. This study clearly demonstrates that a combination of IS-driven overexpression of oxaAb and the presence of particular amino acid substitutions in the active site to improve carbapenem capture is key in conferring carbapenem resistance in A. baumannii and other mechanisms are not required.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , beta-Lactamases , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cromatografia Líquida , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem , beta-Lactamases/genética
13.
J Antimicrob Chemother ; 76(12): 3144-3150, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450630

RESUMO

BACKGROUND: Our primary aim was to test whether cattle-associated fluoroquinolone-resistant (FQ-R) Escherichia coli found on dairy farms are closely phylogenetically related to those causing bacteriuria in humans living in the same 50 × 50 km geographical region suggestive of farm-human sharing. Another aim was to identify risk factors for the presence of FQ-R E. coli on dairy farms. METHODS: FQ-R E. coli were isolated during 2017-18 from 42 dairy farms and from community urine samples. Forty-two cattle and 489 human urinary isolates were subjected to WGS, allowing phylogenetic comparisons. Risk factors were identified using a Bayesian regularization approach. RESULTS: Of 489 FQ-R human isolates, 255 were also third-generation-cephalosporin-resistant, with strong genetic linkage between aac(6')Ib-cr and blaCTX-M-15. We identified possible farm-human sharing for pairs of ST744 and ST162 isolates, but minimal core genome SNP distances were larger between farm-human pairs of ST744 and ST162 isolates (71 and 63 SNPs, respectively) than between pairs of isolates from different farms (7 and 3 SNPs, respectively). Total farm fluoroquinolone use showed a positive association with the odds of isolating FQ-R E. coli, while total dry cow therapy use showed a negative association. CONCLUSIONS: This work suggests that FQ-R E. coli found on dairy farms have a limited impact on community bacteriuria within the local human population. Reducing fluoroquinolone use may reduce the on-farm prevalence of FQ-R E. coli and this reduction may be greater when dry cow therapy is targeted to the ecology of resistant E. coli on the farm.


Assuntos
Bacteriúria , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Teorema de Bayes , Bovinos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fazendas , Feminino , Fluoroquinolonas/farmacologia , Humanos , Filogenia
14.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397699

RESUMO

Little is known about the drivers of critically important antibacterial resistance in species with zoonotic potential present on farms (e.g., CTX-M ß-lactamase-positive Escherichia coli). We collected samples monthly between January 2017 and December 2018 on 53 dairy farms in South West England, along with data for 610 variables concerning antibacterial usage, management practices, and meteorological factors. We detected E. coli resistant to amoxicillin, ciprofloxacin, streptomycin, and tetracycline in 2,754/4,145 (66%), 263/4,145 (6%), 1,475/4,145 (36%), and 2,874/4,145 (69%), respectively, of samples from fecally contaminated on-farm and near-farm sites. E. coli positive for blaCTX-M were detected in 224/4,145 (5.4%) of samples. Multilevel, multivariable logistic regression showed antibacterial dry cow therapeutic choice (including use of cefquinome or framycetin) to be associated with higher odds of blaCTX-M positivity. Low average monthly ambient temperature was associated with lower odds of blaCTX-ME. coli positivity in samples and with lower odds of finding E. coli resistant to each of the four test antibacterials. This was in addition to the effect of temperature on total E. coli density. Furthermore, samples collected close to calves had higher odds of having E. coli resistant to each antibacterial, as well as E. coli positive for blaCTX-M Samples collected on pastureland had lower odds of having E. coli resistant to amoxicillin or tetracycline, as well as lower odds of being positive for blaCTX-MIMPORTANCE Antibacterial resistance poses a significant threat to human and animal health and global food security. Surveillance for resistance on farms is important for many reasons, including tracking impacts of interventions aimed at reducing the prevalence of resistance. In this longitudinal survey of dairy farm antibacterial resistance, we showed that local temperature-as it changes over the course of a year-was associated with the prevalence of antibacterial-resistant E. coli We also showed that prevalence of resistant E. coli was lower on pastureland and higher in environments inhabited by young animals. These findings have profound implications for routine surveillance and for surveys carried out for research. They provide important evidence that sampling at a single time point and/or single location on a farm is unlikely to be adequate to accurately determine the status of the farm regarding the presence of samples containing resistant E. coli.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/genética , beta-Lactamases/genética , Envelhecimento , Amoxicilina/farmacologia , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/microbiologia , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Fazendas , Fezes/microbiologia , Estreptomicina/farmacologia , Temperatura , Tetraciclina/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-31712205

RESUMO

Aminoglycoside resistance in Stenotrophomonas maltophilia is multifactorial, but the most significant mechanism is overproduction of the SmeYZ efflux system. By studying laboratory-selected mutants and clinical isolates, we show here that damage to the 50S ribosomal protein L1 (RplA) activates SmeYZ production. We also show that gentamicin and minocycline, which target the ribosome, induce expression of smeYZ These findings explain the role of SmeYZ in both intrinsic and mutationally acquired aminoglycoside resistance.


Assuntos
Aminoglicosídeos/metabolismo , Antibacterianos/farmacologia , Proteínas Ribossômicas/genética , Ribossomos/efeitos dos fármacos , Stenotrophomonas maltophilia/genética , Farmacorresistência Bacteriana/genética , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Mutação , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-33139281

RESUMO

Fluoroquinolone resistance in Stenotrophomonas maltophilia is multifactorial, but the most significant factor is overproduction of efflux pumps, particularly SmeDEF, following mutation. Here, we report that mutations in the glycosyl transferase gene smlt0622 in S. maltophilia K279a mutant K M6 cause constitutive activation of SmeDEF production, leading to elevated levofloxacin MIC. Selection of a levofloxacin-resistant K M6 derivative, K M6 LEVr, allowed identification of a novel two-component regulatory system, Smlt2645/6 (renamed SmaRS). The sensor kinase Smlt2646 (SmaS) is activated by mutation in K M6 LEVr causing overproduction of two novel ABC transporters and the known aminoglycoside efflux pump SmeYZ. Overproduction of one ABC transporter, Smlt1651-4 (renamed SmaCDEF), causes levofloxacin resistance in K M6 LEVr Overproduction of the other ABC transporter, Smlt2642/3 (renamed SmaAB), and SmeYZ both contribute to the elevated amikacin MIC against K M6 LEVr Accordingly, we have identified two novel ABC transporters associated with antimicrobial drug resistance in S. maltophilia and two novel regulatory systems whose mutation causes resistance to levofloxacin, clinically important as a promising drug for monotherapy against this highly resistant pathogen.


Assuntos
Stenotrophomonas maltophilia , Amicacina , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Stenotrophomonas maltophilia/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-32457105

RESUMO

Colistin resistance in Klebsiella pneumoniae is predominantly caused by mutations that increase expression of the arn (also known as pbg or pmrF) operon. Expression is activated by the PhoPQ and PmrAB two-component systems. Constitutive PhoPQ activation occurs directly by mutation or following loss of MgrB. PhoPQ may also cross-activate PmrAB via the linker protein PmrD. Using proteomics, we show that MgrB loss causes a wider proteomic effect than direct PhoPQ activation, suggesting additional targets for MgrB. Different mgrB mutations cause different amounts of Arn protein production, which correlated with colistin MICs. Disruption of phoP in an mgrB mutant had a reciprocal effect to direct activation of PhoQ in a wild-type background, but the regulated proteins showed almost total overlap. Disruption of pmrD or pmrA slightly reduced Arn protein production in an mgrB mutant, but production was still high enough to confer colistin resistance; disruption of phoP conferred wild-type Arn production and colistin MIC. Activation of PhoPQ directly or through mgrB mutation did not significantly activate PmrAB or PmrC production, but direct activation of PmrAB by mutation was able to do this, and also activated Arn production and conferred colistin resistance. There was little overlap between the PmrAB and PhoPQ regulons. We conclude that under the conditions used for colistin susceptibility testing, PhoPQ-PmrD-PmrAB cross-regulation is not significant and that independent activation of PhoPQ or PmrAB is the main reason that Arn protein production increases above the threshold required for colistin resistance.


Assuntos
Colistina , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Proteômica , Transdução de Sinais
18.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32660988

RESUMO

Serine ß-lactamases are dominant causes of ß-lactam resistance in Klebsiella pneumoniae isolates. Recently, this has driven clinical deployment of the ß-lactam-ß-lactamase inhibitor pairs ceftazidime/avibactam and meropenem/vaborbactam. We show that four steps, i.e., ompK36 and ramR mutation plus carriage of OXA-232 and KPC-3-D178Y variant ß-lactamases, confer ceftazidime/avibactam and meropenem/vaborbactam resistance when both pairs are used together. These findings have implications for decision making about sequential and combinatorial use of these ß-lactam-ß-lactamase inhibitor pairs to treat K. pneumoniae infections.


Assuntos
Ceftazidima , Klebsiella pneumoniae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Ácidos Borônicos , Ceftazidima/farmacologia , Combinação de Medicamentos , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-32312773

RESUMO

Meropenem-vaborbactam resistance in Klebsiella pneumoniae isolates is associated with loss-of-function mutations in the OmpK35 and OmpK36 porins. We identify two previously unknown loss-of-function mutations that confer cefuroxime resistance in K. pneumoniae isolates. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor that controls capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem-vaborbactam in a KPC-3-producing K. pneumoniae isolate.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Borônicos , Regulação para Baixo , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Porinas/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
20.
J Antimicrob Chemother ; 75(1): 65-71, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31538190

RESUMO

OBJECTIVES: Third-generation cephalosporin-resistant Escherichia coli from community-acquired urinary tract infections are increasingly reported worldwide. We sought to determine and characterize the mechanisms of cefotaxime resistance employed by urinary E. coli obtained from primary care, over 12 months, in Bristol and surrounding counties in South-West England. METHODS: Cefalexin-resistant E. coli isolates were identified from GP-referred urine samples using disc susceptibility testing. Cefotaxime resistance was determined by subsequent plating onto MIC breakpoint plates. ß-Lactamase genes were detected by PCR. WGS was performed on 225 isolates and analyses were performed using the Center for Genomic Epidemiology platform. Patient information provided by the referring general practices was reviewed. RESULTS: Cefalexin-resistant E. coli (n=900) isolates were obtained from urines from 146 general practices. Following deduplication by patient approximately 69% (576/836) of isolates were cefotaxime resistant. WGS of 225 isolates identified that the most common cefotaxime-resistance mechanism was blaCTX-M carriage (185/225), followed by plasmid-mediated AmpCs (pAmpCs) (17/225), AmpC hyperproduction (13/225), ESBL blaSHV variants (6/225) or a combination of both blaCTX-M and pAmpC (4/225). Forty-four STs were identified, with ST131 representing 101/225 isolates, within which clade C2 was dominant (54/101). Ciprofloxacin resistance was observed in 128/225 (56.9%) of sequenced isolates, predominantly associated with fluoroquinolone-resistant clones ST131 and ST1193. CONCLUSIONS: Most cefalexin-resistant E. coli isolates were cefotaxime resistant, predominantly caused by blaCTX-M carriage. The correlation between cefotaxime resistance and ciprofloxacin resistance was largely attributable to the high-risk pandemic clones ST131 and ST1193. Localized epidemiological data provide greater resolution than regional data and can be valuable for informing treatment choices in the primary care setting.


Assuntos
Antibacterianos/farmacologia , Cefotaxima/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/urina , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções Urinárias/microbiologia , Idoso , Proteínas de Bactérias/genética , Infecções Comunitárias Adquiridas/microbiologia , Inglaterra/epidemiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Atenção Primária à Saúde/estatística & dados numéricos , Sequenciamento Completo do Genoma , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA