Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mutagenesis ; 36(6): 407-418, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34718711

RESUMO

We have previously described two flow cytometry-based in vitro genotoxicity tests: micronucleus (MN) scoring (MicroFlow®) and a multiplexed DNA damage response biomarker assay (MultiFlow®). Here, we describe a strategy for combining the assays in order to efficiently supplement MN analyses with a panel of biomarkers that comment on cytotoxicity (i.e. relative nuclei count, relative increased nuclei count, cleaved PARP-positive chromatin and ethidium monoazide-positive chromatin) and genotoxic mode of action (MoA; i.e. γH2AX, phospho-histone H3, p53 activation and polyploidy). For these experiments, human TK6 cells were exposed to each of 32 well-studied reference chemicals in 96-well plates for 24 continuous hours. The test chemicals were evaluated over a range of concentrations in the presence and absence of a rat liver S9-based metabolic activation system. MultiFlow assay data were acquired at 4 and 24 h, and micronuclei were scored at 24 h. Testing 32 chemicals in two metabolic activation arms translated into 64 a priori calls: 42 genotoxicants and 22 non-genotoxicants. The MN assay showed high sensitivity and moderate specificity (90% and 68%, respectively). When a genotoxic call required significant MN and MultiFlow responses, specificity increased to 95% without adversely affecting sensitivity. The dose-response data were analysed with PROAST Benchmark Dose (BMD) software in order to calculate potency metrics for each endpoint, and ToxPi software was used to synthesise the resulting lower and upper bound 90% confidence intervals into visual profiles. The BMD/ToxPi combination was found to represent a powerful strategy for synthesising multiple BMD confidence intervals, as the software output provided MoA information as well as insights into genotoxic potency.


Assuntos
Ativação Metabólica/efeitos dos fármacos , Biomarcadores/metabolismo , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Linhagem Celular , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Sensibilidade e Especificidade
2.
Mutagenesis ; 35(2): 161-167, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32050029

RESUMO

Inflammatory bowel disease (IBD) is an important risk factor for gastrointestinal cancers. Inflammation and other carcinogenesis-related effects at distal, tissue-specific sites require further study. In order to better understand if systemic genotoxicity is associated with IBD, we exposed mice to dextran sulfate sodium salt (DSS) and measured the incidence of micronucleated cells (MN) and Pig-a mutant phenotype cells in blood erythrocyte populations. In one study, 8-week-old male CD-1 mice were exposed to 0, 1, 2, 3 or 4% w/v DSS in drinking water. The 4-week in-life period was divided into four 1-week intervals-alternately on then off DSS treatment. Low volume blood samples were collected for MN analysis at the end of each week, and cardiac blood samples were collected at the end of the 4-week period for Pig-a analyses. The two highest doses of DSS were observed to induce significant increases in reticulocyte frequencies. Even so, no statistically significant treatment-related effects on the genotoxicity biomarkers were evident. While one high-dose mouse showed modestly elevated MN frequencies during the DSS treatment cycles, it also exhibited exceptionally high reticulocyte frequencies (e.g. 18.7% at the end of the second DSS cycle). In a second study, mice were treated with 0 or 4% DSS for 9-18 consecutive days. Exposure was continued until rectal bleeding or morbidity was evident, at which point the treatment was terminated and blood was collected for MN analysis. The Pig-a assay was conducted on samples collected 29 days after the start of treatment. The initial blood specimens showed highly elevated reticulocyte frequencies in DSS-exposed mice (mean ± SEM = 1.75 ± 0.10% vs. 13.04 ± 3.66% for 0 vs. 4% mice, respectively). Statistical analyses showed no treatment-related effect on MN or Pig-a mutant frequencies. Even so, the incidence of MN versus reticulocytes in the DSS-exposed mice were positively correlated (linear fit R2 = 0.657, P = 0.0044). Collectively, these results suggest that in the case of the DSS CD-1 mouse model, systemic effects include stress erythropoiesis but not remarkable genotoxicity. To the extent MN may have been slightly elevated in a minority of individual mice, these effects appear to be secondary, likely attributable to stimulated erythropoiesis.


Assuntos
Sulfato de Dextrana/toxicidade , Doenças Inflamatórias Intestinais/genética , Proteínas de Membrana/genética , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Camundongos , Testes de Mutagenicidade , Mutação/efeitos dos fármacos
3.
Mutagenesis ; 30(3): 343-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25833916

RESUMO

Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.


Assuntos
Carbamatos/toxicidade , Carcinógenos/toxicidade , Proteínas de Membrana/genética , Mutagênicos/toxicidade , Uretana/toxicidade , Animais , Dano ao DNA , Masculino , Testes para Micronúcleos , Mutagênese , Mutação , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos , Reticulócitos/patologia
4.
Mutagenesis ; 30(3): 349-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25833915

RESUMO

Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N-ethyl-N-nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1-3). Pig-a mutant phenotype reticulocyte (RET(CD59-)) and mutant phenotype erythrocyte (RBC(CD59-)) frequencies were determined on study Days -4, 15, 29 and 46 using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). Additionally, blood samples collected on Day 4 were analysed for micronucleated reticulocyte (MN-RET) frequency (In Vivo MicroFlow®). The percentage of reticulocytes (%RET) was markedly higher in the 7-week old males compared to females through Day 15 (2.39-fold higher on Day -4). At 25mg/kg/day, ENU reduced Day 4 RET frequencies in both sexes, and the two highest dose levels resulted in elevated MN-RET frequencies, with no sex or treatment × sex interaction. The two highest dose levels significantly elevated the frequencies of mean RET(CD59-) and RBC(CD59-) in both sexes from Day 15 onward. RET(CD59-) and RBC(CD59-) frequencies were somewhat lower for females compared to males at the highest dose level studied, and differences in RET(CD59-) resulted in a statistically significant interaction effect of treatment × sex. In the study with 14-week old rats, treatment was for 3 days with 0 or 25mg ENU/kg/day. RET frequencies differed to a lesser degree between the sexes, and in this case there was no evidence of a treatment × sex interaction. These results suggest that the slightly higher response in younger males than in the younger females may be related to differences in erythropoiesis function at that age. In conclusion, while some quantitative differences were noted, there were no qualitative differences in how males and females responded to a prototypical mutagen, and support the contention that both sexes are equally acceptable for Pig-a gene mutation studies.


Assuntos
Proteínas de Membrana/genética , Animais , Etilnitrosoureia/toxicidade , Feminino , Masculino , Testes para Micronúcleos , Mutagênese , Mutagênicos/toxicidade , Mutação , Taxa de Mutação , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos
5.
Environ Mol Mutagen ; 65(5): 156-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757760

RESUMO

This article describes a range of high-dimensional data visualization strategies that we have explored for their ability to complement machine learning algorithm predictions derived from MultiFlow® assay results. For this exercise, we focused on seven biomarker responses resulting from the exposure of TK6 cells to each of 126 diverse chemicals over a range of concentrations. Obviously, challenges associated with visualizing seven biomarker responses were further complicated whenever there was a desire to represent the entire 126 chemical data set as opposed to results from a single chemical. Scatter plots, spider plots, parallel coordinate plots, hierarchical clustering, principal component analysis, toxicological prioritization index, multidimensional scaling, t-distributed stochastic neighbor embedding, and uniform manifold approximation and projection are each considered in turn. Our report provides a comparative analysis of these techniques. In an era where multiplexed assays and machine learning algorithms are becoming the norm, stakeholders should find some of these visualization strategies useful for efficiently and effectively interpreting their high-dimensional data.


Assuntos
Algoritmos , Aprendizado de Máquina , Testes de Mutagenicidade , Mutagênicos , Análise de Componente Principal , Humanos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Análise por Conglomerados , Linhagem Celular , Biomarcadores , Visualização de Dados
6.
Environ Mol Mutagen ; 64(3): 167-175, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841969

RESUMO

Hydroxyurea is approved for treating children and adults with sickle cell anemia (SCA). Despite its proven efficacy, concerns remain about its mutagenic and carcinogenic potential that hamper its widespread use. Cell culture- and animal-based investigations indicate that hydroxyurea's genotoxic effects are due to indirect clastogenicity in select cell types when high dose and time thresholds are exceeded (reviewed by Ware & Dertinger, 2021). The current study extends these preclinical observations to pediatric patients receiving hydroxyurea for treatment of SCA. First, proof-of-principle experiments with testicular cancer patients exposed to a cisplatin-based regimen validated the ability of flow cytometric blood-based micronucleated reticulocyte (MN-RET) and PIG-A mutant reticulocyte (MUT RET) assays to detect clastogenicity and gene mutations, respectively. Second, these biomarkers were measured in a cross-sectional study with 26 SCA patients receiving hydroxyurea and 13 SCA patients without exposure. Finally, a prospective study was conducted with 10 SCA patients using pretreatment blood samples and after 6 or 12 months of therapy. Cancer patients exposed to cisplatin exhibited increased MN-RET within days of exposure, while the MUT RET endpoint required more time to reach maximal levels. In SCA patients, hydroxyurea induced MN-RET in both the cross-sectional and prospective studies. However, no evidence of PIG-A gene mutation was found in hydroxyurea-treated children, despite the fact that the two assays use the same rapidly-dividing, highly-exposed cell type. Collectively, these results reinforce the complementary nature of MN-RET and MUT RET biomarkers, and indicate that hydroxyurea can be clastogenic but was not mutagenic in young patients with SCA.


Assuntos
Anemia Falciforme , Neoplasias Testiculares , Humanos , Masculino , Animais , Hidroxiureia/efeitos adversos , Estudos Prospectivos , Estudos Transversais , Neoplasias Testiculares/induzido quimicamente , Neoplasias Testiculares/tratamento farmacológico , Cisplatino/efeitos adversos , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Mutagênese , Mutagênicos/uso terapêutico
7.
Mutat Res ; 742(1-2): 79-83, 2012 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-22227404

RESUMO

Erythrocyte-based micronucleus tests have traditionally been performed with bone marrow specimens, since, in most preclinical animal models, the spleen can efficiently remove aberrant erythrocytes from the circulation. Even so, evidence is mounting that by examining tens of thousands of young (CD71-positive) circulating reticulocytes for the presence of micronuclei via flow cytometry, a sensitive assay of cytogenetic damage is realized. The work described herein was designed to test this hypothesis further, using an important preclinical toxicology model, the beagle dog. In these experiments, purebred male beagles were treated for five consecutive days with cyclophosphamide (0, 6.25, 12.5 or 25mg/m(2)/day) or for two consecutive days with etoposide (0, 1.56, 6.25 or 12.5mg/m(2)/day). Before treatment, and on each day of administration, blood specimens were collected and processed for flow cytometric scoring of micronucleated reticulocyte (MN-RET) frequency. Twenty-four hours after the final administration, blood MN-RET frequencies were determined via flow cytometry, and frequencies of micronucleated bone marrow polychromatic erythrocytes (MN-PCE) were determined using acridine orange and May-Grunwald Giemsa staining. In the case of cyclophosphamide, elevated blood MN-RET frequencies were observed 2 days after treatment began, and the maximal frequency was achieved 1 day later. Similarly, etoposide-induced blood MN-RET were not evident 1 day after administration began, but a robust effect was apparent 2 days after treatments were initiated. Twenty-four hours after the final administrations, dose-related micronucleus responses were evident for both agents and in both blood and bone marrow compartments. Good overall agreement between MN-RET and MN-PCE frequencies was evidenced by high Spearman's correlation coefficients-0.89 for blood flow cytometry versus bone marrow acridine orange staining and 0.83 for blood flow cytometry versus bone marrow May-Grunwald Giemsa staining. Taken together, these results provide further support for the cross-species utility of flow cytometry-based blood MN-RET measurements.


Assuntos
Ciclofosfamida/toxicidade , Etoposídeo/toxicidade , Citometria de Fluxo/métodos , Testes para Micronúcleos/métodos , Reticulócitos/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Cães , Eritrócitos/efeitos dos fármacos , Masculino , Mutagênicos/toxicidade , Contagem de Reticulócitos
8.
Mutagenesis ; 26(1): 147-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21164196

RESUMO

The relative simplicity of the in vitro micronucleus (MNvit) endpoint has made it amenable to several automated scoring approaches. Flow cytometry is one such scoring platform that has been successfully employed. This review describes the origins of the MNvit assay, as well as the evolution and properties of flow cytometry-based scoring systems. While the current state-of-the-art methods acquire micronucleus (MN) frequency data very efficiently, it is becoming clear that they also endow the assay with high information content. For instance, simultaneous with MN frequency determinations, several additional endpoints are acquired that provide insights into cytotoxicity, cell cycle perturbations and, in the event of MN induction, information about genotoxic mode of action. This review concludes with a discussion regarding data gaps and also recommendations for additional work that is needed to more fully realise the potential of flow cytometric MNvit scoring.


Assuntos
Contagem de Células/métodos , Contagem de Células/tendências , Citometria de Fluxo/métodos , Citometria de Fluxo/tendências , Animais , Células Cultivadas , Humanos , Testes para Micronúcleos/tendências
9.
Mutat Res ; 721(2): 163-70, 2011 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-21277384

RESUMO

In vivo mutation assays based on the Pig-a null phenotype, that is, the absence of cell surface glycosylphosphatidylinositol (GPI) anchored proteins such as CD59, have been described. This work has been accomplished with hematopoietic cells, most often rat peripheral blood erythrocytes (RBCs) and reticulocytes (RETs). The current report describes new sample processing procedures that dramatically increase the rate at which cells can be evaluated for GPI anchor deficiency. This new method was applied to blood specimens from vehicle, 1,3-propane sultone, melphalan, and N-ethyl-N-nitrosourea treated Sprague Dawley rats. Leukocyte- and platelet-depleted blood samples were incubated with anti-CD59-phycoerythrin (PE) and anti-CD61-PE, and then mixed with anti-PE paramagnetic particles and Counting Beads (i.e., fluorescent microspheres). An aliquot of each specimen was stained with SYTO 13 and flow cytometric analysis was performed to determine RET percentage, RET:Counting Bead ratio, and RBC:Counting Bead ratio. The major portion of these specimens were passed through ferromagnetic columns that were suspended in a magnetic field, thereby depleting each specimen of wild-type RBCs (and platelets) based on their association with anti-PE paramagnetic particles. The eluates were concentrated via centrifugation and the resulting suspensions were stained with SYTO 13 and analyzed on the flow cytometer to determine mutant phenotype RET:Counting Bead and mutant phenotype RBC:Counting Bead ratios. The ratios obtained from pre- and post-column analyses were used to derive mutant phenotype RET and mutant phenotype RBC frequencies. Results from vehicle control and genotoxicant-treated rats are presented that indicate the scoring system is capable of returning reliable mutant phenotype cell frequencies. Using this wild-type cell depletion strategy, it was possible to interrogate ≥ 3 million RETs and ≥ 100 million RBCs per rat in approximately 7 min. Beyond considerably enhancing the throughput capacity of the analytical platform, these blood-processing procedures were also shown to enhance the precision of the measurements.


Assuntos
Citometria de Fluxo/métodos , Separação Imunomagnética/métodos , Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Animais , Antígenos CD59/metabolismo , Eritrócitos , Glicosilfosfatidilinositóis/metabolismo , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Reticulócitos
10.
Cell Rep ; 34(11): 108864, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730582

RESUMO

N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag-/-) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.


Assuntos
Replicação do DNA/genética , Mutagênese/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Biomarcadores Tumorais/metabolismo , Morte Celular , Instabilidade Cromossômica/genética , Dano ao DNA/genética , DNA Glicosilases/deficiência , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Dietilnitrosamina , Suscetibilidade a Doenças , Histonas/metabolismo , Recombinação Homóloga/genética , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Micronúcleos com Defeito Cromossômico , Nitrosaminas , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação
11.
Mutat Res ; 703(2): 191-9, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20826227

RESUMO

This laboratory has developed a flow cytometric approach for scoring in vitro micronuclei (In Vitro MicroFlow(®)) whose characteristics are expected to benefit studies designed to comprehensively investigate genotoxicity dose-response relationships. In particular, new experimental designs become possible when automated scoring is combined with treatment, processing and sampling that all occur in microtiter plates. To test this premise, experiments described herein investigated micronucleus (MN) formation in TK6 cells treated with genotoxic agents applied at 22 closely spaced concentrations in quadruplicate, with 10,000 cells analyzed per replicate. The genotoxicants colchicine, vinblastine sulfate, ethyl methanesulfonate, methyl methanesulfonate, ethyl nitrosourea, methyl nitrosourea, and bleomycin were applied continuously for 24-30 h. Following treatment, all cell processing, sampling and data acquisition steps were accomplished in the same 96-well plate. Data acquisition occurred in a walk-away mode via the use of a high throughput sampling device. The resulting flow cytometric MN values were evaluated with a statistical model that indicated non-linear relationships describe the data better than linear fits. The one exception was bleomycin, where MN induction was consistently best described by a linear dose-response relationship. Collectively, these results suggest that flow cytometry represents a practical and efficient approach for thoroughly examining the dose-response relationship, and clearly benefits studies that seek to characterize no observable genotoxic effect levels, lowest observable genotoxic effect levels, and/or benchmark doses.


Assuntos
Dano ao DNA , Relação Dose-Resposta a Droga , Citometria de Fluxo/métodos , Testes para Micronúcleos/métodos , Mutagênicos/administração & dosagem , Linhagem Celular , Humanos , Mutagênicos/toxicidade
12.
Mutat Res ; 698(1-2): 38-42, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20230905

RESUMO

Hydroxyurea induces fetal hemoglobin, improves laboratory parameters, and ameliorates clinical complications of sickle cell anemia (SCA), but its long-term efficacy and safety in this patient population remain incompletely defined. Although generally considered non-DNA reactive, an important safety concern is that hydroxyurea may indirectly cause genotoxic damage. To better address this safety issue of hydroxyurea in patients with SCA, we measured the production of micronuclei (MN) in red blood cells (RBCs) as a marker of genotoxicity. Blood samples were collected from children with SCA enrolled in the Hydroxyurea Study of Long-term Effects (ClinicalTrials.gov NCT00305175). Flow cytometry quantified circulating MN-containing erythrocyte sub-populations before and during hydroxyurea exposure. The frequency of micronucleated reticulocytes (MN-CD71(+)) and micronucleated mature erythrocytes (MN-RBC) was then tested for associations with laboratory and clinical data. In cross-sectional analysis of 293 blood samples from 105 children with SCA and a median of 2 years of hydroxyurea therapy, exposure to hydroxyurea was associated with significantly increased frequencies of MN-CD71(+) and MN-RBC compared to baseline. The increases were evident by 3 months of therapy, and did not escalate further with up to 12 years of continuous drug exposure. In prospective longitudinal analysis, substantial inter-individual variation in the effect of hydroxyurea on %MN-CD71(+) was observed that was associated with the expected laboratory effects of hydroxyurea. In conclusion, clinically relevant exposure to hydroxyurea is associated with increased MN production consistent with erythroblast genotoxicity but with substantial inter-patient variability. Associations between increased %MN-CD71(+) and laboratory benefits suggest that hydroxyurea effects on MN production may be related to individual patient sensitivity to hydroxyurea within the bone marrow.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/efeitos adversos , Dano ao DNA , Hidroxiureia/efeitos adversos , Micronúcleos com Defeito Cromossômico , Adolescente , Criança , Pré-Escolar , Humanos , Testes para Micronúcleos , Mutação , Tempo
13.
Environ Mol Mutagen ; 61(9): 901-909, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32761646

RESUMO

The etiology of distal site cancers in inflammatory bowel disease (IBD) is not well understood and requires further study. We investigated whether pediatric IBD patients' blood cells exhibit elevated levels of genomic damage by measuring the frequency of mutant phenotype (CD59-/CD55-) reticulocytes (MUT RET) as a reporter of PIG-A mutation, and the frequency of micronucleated reticulocytes (MN-RET) as an indicator of chromosomal damage. IBD patients (n = 18 new-onset disease, 46 established disease) were compared to age-matched controls (constipation or irritable bowel syndrome patients from the same clinic, n = 30) and young healthy adults age 19-24 (n = 25). IBD patients showed no indication of elevated MUT RET relative to controls (mean ± SD = 3.1 ± 2.3 × 10-6 vs. 3.6 ± 5.6 x 10-6 , respectively). In contrast, 59 IBD patients where %MN-RET measurements were obtained, 10 exceeded the upper bound 90% tolerance interval derived from control subjects (i.e., 0.42%). Furthermore, each of the 10 IBD patients with elevated MN-RET had established disease (10/42), none were new-onset (0/17) (p = .049). Interestingly, each of the subjects with increased chromosomal damage was receiving anti-TNF based monotherapy at the time blood was collected (10/10, 100%), whereas this therapy was less common (20/32, 63%) among patients that exhibited ≤0.42% MN-RET (p = .040). The results clearly indicate the need for further work to understand whether the results presented herein are reproducible and if so, to elucidate the causative factor(s) responsible for elevated MN-RET frequencies in some IBD patients.


Assuntos
Antígenos CD/genética , Antígenos CD59/genética , Moléculas de Adesão Celular/genética , Doenças Inflamatórias Intestinais/genética , Proteínas de Membrana/genética , Micronúcleos com Defeito Cromossômico , Mutação , Adolescente , Adulto , Criança , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Testes para Micronúcleos , Reticulócitos/metabolismo , Reticulócitos/patologia , Adulto Jovem
14.
Environ Mol Mutagen ; 61(5): 500-507, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32187725

RESUMO

The in vivo Pig-a assay is being used in safety studies to evaluate the potential of chemicals to induce somatic cell gene mutations. Ongoing work is aimed at developing an Organization for Economic Cooperation and Development (OECD) test guideline to support routine use for regulatory purposes (OECD project number 4.93). Among the requirements for OECD approval are demonstrations of assay reliability, including reproducibility within and among laboratories. Experiments reported herein address the reproducibility of the rat blood Pig-a assay using the reference mutagens chlorambucil and melphalan. These agents were evaluated for their ability to induce Pig-a mutant erythrocytes in three separate studies conducted across two laboratories. Each of the studies utilized a common treatment schedule: 28 consecutive days of exposure via oral gavage. Whereas one laboratory studied Crl:CD(SD) rats, the other laboratory used Wistar Han rats. One or two days after cessation of treatment blood samples were collected for mutant reticulocyte and mutant erythrocyte measurements that were accomplished with the same analytical technique whereby samples were depleted of wildtype erythrocytes via immunomagnetic separation followed by flow cytometric enumeration of mutant phenotype cells (MutaFlow®). Dunnett's test results showed similar qualitative outcomes within and between laboratories, that is, each chemical and each study demonstrated statistically significant, dose-related increases in mutant reticulocyte and erythrocyte frequencies. Benchmark dose analysis (PROAST software) provided a means to quantitatively analyze the results, and the relatively tight, overlapping benchmark dose confidence intervals observed for each of the two chemicals indicate that within and between laboratory reproducibility of the Pig-a assay are high, adding further support for the development of an OECD test guideline.


Assuntos
Bioensaio/métodos , Laboratórios , Mutação/genética , Animais , Clorambucila/farmacologia , Eritrócitos/efeitos dos fármacos , Masculino , Melfalan/farmacologia , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Reticulócitos/efeitos dos fármacos
15.
Environ Mol Mutagen ; 61(8): 807-819, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32572998

RESUMO

We previously described flow cytometry-based methods for scoring the incidence of micronucleated reticulocytes (MN-RET) and PIG-A mutant phenotype reticulocytes (MUT RET) in rodent and human blood samples. The current report describes important methodological improvements for human blood analyses, including immunomagnetic enrichment of CD71-positive reticulocytes prior to MN-RET scoring, and procedures for storing frozen blood for later PIG-A analysis. Technical replicate variability in MN-RET and MUT RET frequencies based on blood specimens from 14 subjects, intra-subject variability based on serial blood draws from 6 subjects, and inter-subject variation based on up to 344 subjects age 0 to 73 years were quantified. Inter-subject variation explained most of the variability observed for both endpoints (≥77%), with much lower intra-subject and technical replicate variability. The relatively large degree of inter-subject variation is apparent from mean and standard deviation values for MN-RET (0.15 ± 0.10%) and MUT RET (4.7 ± 5.0 per million, after omission of two extreme outliers). The influences of age and sex on inter-subject variation were investigated, and neither factor affected MN-RET whereas both influenced MUT RET frequency. The lowest MUT RET values were observed for subjects <11 years old, and males had moderately higher frequencies than females. These results indicate that MN-RET and MUT RET are automation-compatible biomarkers of genotoxicity that bridge species of toxicological interest to include human populations. These data will be useful for appropriately designing future human studies that include these biomarkers of genotoxicity, and highlight the need for additional work aimed at identifying the sources of inter-individual variability reported herein.


Assuntos
Citometria de Fluxo/métodos , Proteínas de Membrana/genética , Testes para Micronúcleos , Mutação , Reticulócitos/ultraestrutura , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
16.
Environ Mol Mutagen ; 60(8): 704-739, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31294869

RESUMO

Regulatory guidance documents stress the value of assessing the most appropriate endpoints in multiple tissues when evaluating the in vivo genotoxic potential of chemicals. However, conducting several independent studies to evaluate multiple endpoints and/or tissue compartments is resource intensive. Furthermore, when dependent on visual detection, conventional approaches for scoring genotoxicity endpoints can be slow, tedious, and less objective than the ideal. To address these issues with current practices we attempted to (1) devise resource sparing treatment and harvest schedules that are compatible with liver and blood micronucleus endpoints, as well as the Pig-a gene mutation assay, and (2) utilize flow cytometry-based methods to score each of these genotoxicity biomarkers. Proof-of-principle experiments were performed with 4-week-old male and female Crl:CD(SD) rats exposed to aristolochic acids I/II, benzo[a]pyrene, cisplatin, cyclophosphamide, diethylnitrosamine, 1,2-dimethylhydrazine, dimethylnitrosamine, 2,6-dinitrotoluene, hydroxyurea, melphalan, temozolomide, quinoline, or vinblastine. These 13 chemicals were each tested in two treatment regimens: one 3-day exposure cycle, and three 3-day exposure cycles. Each exposure, blood collection, and liver harvest was accomplished during a standard Monday-Friday workweek. Key findings are that even these well-studied, relatively potent genotoxicants were not active in both tissues and all assays (indeed only cisplatin was clearly positive in all three assays); and whereas the sensitivity of the Pig-a assay clearly benefitted from three versus one treatment cycle, micronucleus assays yielded qualitatively similar results across both study designs. Collectively, these results suggest it is possible to significantly reduce animal and other resource requirements while improving assessments of in vivo genotoxicity potential by simultaneously evaluating three endpoints and two important tissue compartments using fit-for-purpose study designs in conjunction with flow cytometric scoring approaches. Environ. Mol. Mutagen., 60:704-739, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/citologia , Proteínas de Membrana/genética , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/métodos , Animais , Dano ao DNA/genética , Feminino , Masculino , Mutagênicos/toxicidade , Ratos , Projetos de Pesquisa
17.
Environ Mol Mutagen ; 60(1): 47-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30264522

RESUMO

The rodent blood Pig-a assay has been undergoing international validation for use as an in vivo hematopoietic cell gene mutation assay, and given the promising results an Organization for Economic Co-operation and Development (OECD) Test Guideline is currently under development. Enthusiasm for the assay stems in part from its alignment with 3Rs principles permitting combination with other genotoxicity endpoint(s) and integration into repeat-dose toxicology studies. One logistical requirement and experimental design limitation has been that blood samples required antibody labeling and flow cytometric analysis within one week of collection. In the current report, we describe the performance of freeze-thaw reagents that enable storage and subsequent labeling and analysis of rat blood samples for at least seven months. Data generated from three laboratories are presented that demonstrate rat erythrocyte recoveries in the range of 80-90%. Despite some loss of erythrocytes, Pearson coefficients and Bland-Altman analyses based on fresh blood vs. frozen/thawed matched pairs indicate that mutant cell and reticulocyte frequencies are not significantly affected, as the measurements are highly correlated and exhibit low bias. Collectively, these data support the effectiveness and suitability of a freeze-thaw procedure that endows the assay with several new advantageous characteristics that include: flexibility in scheduling personnel/instrumentation; reliability when shipping samples from in-life facilities to analytical sites; 3Rs-friendly, as blood from positive control animals can be stored frozen to serve as analytical controls; and ability to defer a decision to generate Pig-a data until more toxicological information becomes available on a test substance. Environ. Mol. Mutagen. 60:47-55, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Preservação de Sangue/métodos , Carboplatina/toxicidade , Eritrócitos/efeitos dos fármacos , Etilnitrosoureia/toxicidade , Glicosilfosfatidilinositóis/genética , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Reticulócitos/efeitos dos fármacos , Animais , Criopreservação/métodos , Eritrócitos/citologia , Feminino , Citometria de Fluxo/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Reticulócitos/citologia
18.
Mutat Res ; 650(2): 181-95, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18182318

RESUMO

An international, multi-lab trial was conducted to evaluate a flow cytometry-based method for scoring micronuclei in mouse lymphoma L5178Y cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Mol. Mutagen. 47 (2006) 56-66]. A reference laboratory investigated the potential of six chemicals to induce micronuclei -- the genotoxicants mitomycin C (MMC), etoposide (ETOPO), and vinblastine (VB), and the non-genotoxicants sucrose (SUC), staurosporine (STS), and dexamethasone (DEX). The latter two non-genotoxicants were selected as extreme challenges to the assay because of their potent apoptogenic activity. Three collaborating laboratories were supplied with prototype In Vitro MicroFlow kits, and each was assigned one genotoxicant and one non-genotoxicant. Cells were treated continuously for 24h over a range of concentrations up to 5 mg/ml, or overtly cytotoxic concentrations. Micronuclei were scored via standard microscopy and flow cytometry. In addition to enumerating micronucleus frequencies, a cytotoxicity measurement that is simultaneously acquired with the flow cytometric micronucleus scoring procedure was evaluated (Flow-NBR). With this method, latex particles served as counting beads, and facilitated relative survival measurements that exclude the presence of dead/dying cells. For comparison purposes, additional cytotoxicity endpoints were measured, including several that are based on cell number, and others that reflect compromised membrane integrity, including dye permeability and/or phospholipid distribution. Key findings for this set of compounds include the following: (1) significant discrepancies in top concentration selection were found when cytotoxicity measurements were based on different methods, with the Flow-NBR approach tending to be the most sensitive, (2) both microscopy- and flow cytometry-based scoring methods detected concentration-dependent micronucleus formation for the three genotoxic agents studied, with good agreement between the reference laboratory and the collaborating laboratories, and (3) whereas flow cytometric analyses showed no significant increases for the non-genotoxicants when top concentration selection was based on Flow-NBR, significantly elevated micronucleus frequencies were observed for concentrations that were chosen based on less-sensitive cytotoxicity assays. Collectively, these results indicate that rapid assessment of genotoxicity can be accomplished with a relatively simple flow cytometric technique, and that the scoring system is transferable across laboratories. Furthermore, a concurrent assessment of cytotoxicity, Flow-NBR, may help reduce the occurrence of irrelevant positive results, as it may represent a more appropriate means for choosing top concentration levels. Finally, the data presented herein reinforce concerns about the manner in which cytotoxicity limits are described in guidance documents, since these recommendations tend to cite fixed cut-off values without reference to methodology.


Assuntos
Citometria de Fluxo/métodos , Testes para Micronúcleos/métodos , Animais , Apoptose/efeitos dos fármacos , Automação , Linhagem Celular Tumoral , Dexametasona/toxicidade , Camundongos , Mitomicina/toxicidade , Estaurosporina/toxicidade , Sacarose/toxicidade , Vimblastina/toxicidade
19.
Environ Mol Mutagen ; 59(1): 30-37, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833575

RESUMO

The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.0156 to 0.125 mg/kg/day. Micronucleated reticulocyte frequencies in peripheral blood were determined at Days 4 and 29, and mutant cell frequencies were determined at Days -4, 15, 29, and 46. Vinblastine affected reticulocyte frequencies, with reductions noted during the treatment phase and increases observed following cessation of treatment. Micronucleated reticulocyte frequencies were significantly elevated at Day 4 in the high dose group. Although a statistically significant increase in mutant reticulocyte frequencies were found for one dose group at a single time point (Day 46), it was not deemed biologically relevant because there was no analogous finding in mutant RBCs, it occurred at the lowest dose tested, and only 1 rat exceeded an upper bound tolerance interval established with historical negative control rats. Therefore, whereas micronucleus induction reflects vinblastine's well-established aneugenic effect on hematopoietic cells, the lack of a Pig-a response indicates that this tubulin-binding agent does not cause appreciable mutagenicity in this same cell type. Environ. Mol. Mutagen. 59:30-37, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Aneugênicos/farmacologia , Proteínas de Membrana/genética , Vimblastina/farmacologia , Animais , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Masculino , Testes para Micronúcleos/métodos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Mutação/genética , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-29555062

RESUMO

Regulatory guidance documents stress the value of assessing multiple tissues and the most appropriate endpoints when evaluating chemicals for in vivo genotoxic potential. However, conducting several independent studies to consider multiple endpoints and/or tissue compartments is resource intensive. Furthermore, conventional approaches for scoring genotoxicity endpoints are slow, tedious, and less objective than what would be considered ideal. In an effort to address these issues with current practices, we attempted to i) employ flow cytometry-based methods to score liver micronuclei, blood micronuclei, and blood Pig-a gene mutation, and ii) integrate the endpoints into a common general toxicology study design-the rat 28-day repeat dose study. A proof-of-principle experiment was performed with 6-week old male Crl:CD(SD) rats exposed to diethylnitrosamine (DEN) for 28 consecutive days. One day later blood was collected for micronucleated reticulocyte (MN-RET) and Pig-a mutation assays, and liver tissue was obtained for micronucleated hepatocyte (MNHEP) scoring. MN-RET frequencies were not affected by DEN exposure, and mean Pig-a mutant cell frequencies were only slightly elevated. On the other hand, % MNHEP showed marked, dose-related increases (2.2, 7.2, and 9.1 mean fold-increase for 5, 10, 15 mg DEN/kg/day, respectively). Concurrent with MNHEP analyses, assessments of Ki-67-positive events and the proportion of 8n nuclei provided evidence for treatment-related changes to hepatocyte proliferation. Collectively, these results reinforce the importance of evaluating chemicals' genotoxic potential in liver in addition to hematopoietic cells, and suggest that several automated measurements can be successfully integrated into repeat-dose studies for higher efficiencies and better utilization of fewer animals.


Assuntos
Dietilnitrosamina/toxicidade , Hepatócitos/efeitos dos fármacos , Proteínas de Membrana/genética , Testes de Mutagenicidade/métodos , Mutação , Animais , Dietilnitrosamina/administração & dosagem , Relação Dose-Resposta a Droga , Citometria de Fluxo , Masculino , Testes para Micronúcleos/métodos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA