Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(29): 17130-17134, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636262

RESUMO

Supergenes underlie striking polymorphisms in nature, yet the evolutionary mechanisms by which they arise and persist remain enigmatic. These clusters of linked loci can spread in populations because they captured coadapted alleles or by selfishly distorting the laws of Mendelian inheritance. Here, we show that the supergene haplotype associated with multiple-queen colonies in Alpine silver ants is a maternal effect killer. All eggs from heterozygous queens failed to hatch when they did not inherit this haplotype. Hence, the haplotype specific to multiple-queen colonies is a selfish genetic element that enhances its own transmission by causing developmental arrest of progeny that do not carry it. At the population level, such transmission ratio distortion favors the spread of multiple-queen colonies, to the detriment of the alternative haplotype associated with single-queen colonies. Hence, selfish gene drive by one haplotype will impact the evolutionary dynamics of alternative forms of colony social organization. This killer hidden in a social supergene shows that large nonrecombining genomic regions are prone to cause multifarious effects across levels of biological organization.


Assuntos
Formigas/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Insetos/genética , Herança Materna/genética , Comportamento Social , Animais , Formigas/crescimento & desenvolvimento , Formigas/fisiologia , Evolução Molecular , Feminino , Haplótipos/genética , Masculino , Meiose/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sequências Repetitivas de Ácido Nucleico/genética
2.
Mol Ecol ; 31(12): 3416-3431, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460311

RESUMO

The application of demographic history modelling and inference to the study of divergence between species has become a cornerstone of speciation genomics. Speciation histories are usually reconstructed by analysing single populations from each species, assuming that the inferred population history represents the actual speciation history. However, this assumption may not be met when species diverge with gene flow, for example, when secondary contact may be confined to specific geographic regions. Here, we tested whether divergence histories inferred from heterospecific populations may vary depending on their geographic locations, using the two wood ant species Formica polyctena and F. aquilonia. We performed whole-genome resequencing of 20 individuals sampled in multiple locations across the European ranges of both species. Then, we reconstructed the histories of distinct heterospecific population pairs using a coalescent-based approach. Our analyses always supported a scenario of divergence with gene flow, suggesting that divergence started in the Pleistocene (c. 500 kya) and occurred with continuous asymmetrical gene flow from F. aquilonia to F. polyctena until a recent time, when migration became negligible (2-19 kya). However, we found support for contemporary gene flow in a sympatric pair from Finland, where the species hybridise, but no signature of recent bidirectional gene flow elsewhere. Overall, our results suggest that divergence histories reconstructed from a few individuals may be applicable at the species level. Nonetheless, the geographical context of populations chosen to represent their species should be taken into account, as it may affect estimates of migration rates between species when gene flow is spatially heterogeneous.


Assuntos
Formigas , Fluxo Gênico , Animais , Formigas/genética , Especiação Genética , Genoma , Humanos , Simpatria
3.
Proc Biol Sci ; 288(1949): 20210118, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33906407

RESUMO

The coevolution between dispersal and sociality can lead to linked polymorphisms in both traits, which may favour the emergence of supergenes. Supergenes have recently been found to control social organization in several ant lineages. Whether and how these 'social supergenes' also control traits related to dispersal is yet unknown. Our goal here was to get a comprehensive view of the dispersal mechanisms associated with supergene-controlled alternative social forms in the ant Formica selysi. We measured the production and emission of young females and males by single-queen (monogyne) and multiple-queen (polygyne) colonies, the composition of mating aggregations, and the frequency of crosses within and between social forms in the wild. We found that males and females from alternative social forms did not display strong differences in their propensity to leave the nest and disperse, nor in their mating behaviour. Instead, the social forms differed substantially in sex allocation. Monogyne colonies produced 90% of the females flying to swarms, whereas 57% of the males in swarms originated from polygyne colonies. Most crosses were assortative with respect to social form. However, 20% of the monogyne females did mate with polygyne males, which is surprising as this cross has never been found in mature monogyne colonies. We suggest that the polygyny-determining haplotype free rides on monogyne females, who establish independent colonies that later become polygyne. By identifying the steps in dispersal where the social forms differ, this study sheds light on the behavioural and colony-level traits linking dispersal and sociality through supergenes.


Assuntos
Formigas , Animais , Formigas/genética , Feminino , Haplótipos , Masculino , Polimorfismo Genético , Reprodução , Comportamento Social
4.
Mol Ecol ; 28(6): 1428-1438, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30003603

RESUMO

Nonrecombining genomic variants underlie spectacular social polymorphisms, from bird mating systems to ant social organization. Because these "social supergenes" affect multiple phenotypic traits linked to survival and reproduction, explaining their persistence remains a substantial challenge. Here, we investigate how large nonrecombining genomic variants relate to colony social organization, mating system and dispersal in the Alpine silver ant, Formica selysi. The species has colonies headed by a single queen (monogynous) and colonies headed by multiple queens (polygynous). We confirmed that a supergene with alternate haplotypes-Sm and Sp-underlies this polymorphism in social structure: Females from mature monogynous colonies had the Sm/Sm genotype, while those from polygynous colonies were Sm/Sp and Sp/Sp. Queens heading monogynous colonies were exclusively mated with Sm males. In contrast, queens heading polygynous colonies were mated with Sp males and Sm males. Sm males, which are only produced by monogynous colonies, accounted for 22.9% of the matings with queens from mature polygynous colonies. This asymmetry between social forms in the degree of assortative mating generates unidirectional male-mediated gene flow from the monogynous to the polygynous social form. Biased gene flow was confirmed by a significantly higher number of private alleles in the polygynous social form. Moreover, heterozygous queens were three times as likely as homozygous queens to be multiply mated. This study reveals that the supergene variants jointly affect social organization and multiple components of the mating system that alter the transmission of the variants and thus influence the dynamics of the system.


Assuntos
Formigas/genética , Genética Populacional , Variação Estrutural do Genoma/genética , Reprodução/genética , Alelos , Animais , Feminino , Fluxo Gênico , Genótipo , Heterozigoto , Masculino , Casamento , Repetições de Microssatélites/genética , Comportamento Sexual Animal
5.
J Evol Biol ; 32(7): 742-748, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31016785

RESUMO

Disassortative mating is a powerful mechanism stabilizing polymorphisms at sex chromosomes and other supergenes. The Alpine silver ant, Formica selysi, has two forms of social organization-single-queen and multiple-queen colonies-determined by alternate haplotypes at a large supergene. Here, we explore whether mate preference contributes to the maintenance of the genetic polymorphism at the social supergene. With mate choice experiments, we found that females and males mated randomly with respect to social form. Moreover, queens were able to produce offspring irrespective of whether they had mated with a male from the same or the alternative social form. Yet, females originating from single-queen colonies were more fertile, suggesting that they may be more successful at independent colony founding. We conclude that the pattern of asymmetric assortative mating documented from mature F. selysi colonies in the field is not caused by mate preferences or major genetic incompatibilities between social forms. More generally, we found no evidence that disassortative mate preference contributes to the maintenance of polymorphism at this supergene controlling ant social organization.


Assuntos
Formigas/genética , Formigas/fisiologia , Evolução Biológica , Comportamento Sexual Animal , Comportamento Social , Animais , Feminino , Haplótipos , Masculino , Polimorfismo Genético
6.
Naturwissenschaften ; 103(5-6): 36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27056046

RESUMO

By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento Social , Animais , Inundações , Memória
7.
Evolution ; 76(9): 2105-2115, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35802833

RESUMO

Identifying mechanisms limiting hybridization is a central goal of speciation research. Here, we studied premating and postmating barriers to hybridization between two ant species, Formica selysi and Formica cinerea. These species hybridize in the Rhône valley in Switzerland, where they form a mosaic hybrid zone, with limited introgression from F. selysi into F. cinerea. There was no sign of temporal isolation between the two species in the production of queens and males. With choice experiments, we showed that queens and males strongly prefer to mate with conspecifics. Yet, we did not detect postmating barriers caused by genetic incompatibilities. Specifically, hybrids of all sexes and castes were found in the field and F1 hybrid workers did not show reduced viability compared to nonhybrid workers. To gain insights into the cues involved in species recognition, we analyzed the cuticular hydrocarbons (CHCs) of queens, males, and workers and staged dyadic encounters between workers. CHC profiles differed markedly between species, but were similar in F. cinerea and hybrids. Accordingly, workers also discriminated species, but they did not discriminate F. cinerea and hybrids. We discuss how the CHC-based recognition system of ants may facilitate the establishment of premating barriers to hybridization, independent of hybridization costs.


Assuntos
Formigas , Animais , Formigas/genética , Hibridização Genética , Hidrocarbonetos , Masculino , Reconhecimento Psicológico , Reprodução
8.
Curr Biol ; 30(2): 304-311.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902719

RESUMO

Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.


Assuntos
Formigas/genética , Proteínas de Insetos/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Animais , Haplótipos , Proteínas de Insetos/metabolismo , Cromossomos Sexuais/genética , Fatores de Transcrição/metabolismo
9.
Sci Rep ; 7(1): 16262, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176649

RESUMO

Ant queens often associate to found new colonies, yet the benefits of this behaviour remain unclear. A major hypothesis is that queens founding in groups are protected by social immunity and can better resist disease than solitary queens, due to mutual grooming, sharing of antimicrobials, or higher genetic diversity among their workers. We tested this hypothesis by manipulating the number of queens in incipient colonies of Lasius niger and measuring their resistance to the fungal entomopathogen Metarhizium brunneum. We found no evidence for social immunity in associations of founding queens. First, co-founding queens engaged in self-grooming, but performed very little allo-grooming or trophallaxis. Second, co-founding queens did not exhibit higher pathogen resistance than solitary queens, and their respective workers did not differ in disease resistance. Finally, queens founding in groups increased their investment in a component of individual immunity, as expected if they do not benefit from social immunity but respond to a higher risk of disease. Overall, our results provide no evidence that joint colony founding by L. niger queens increases their ability to resist fungal pathogens.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Animais , Feminino , Reprodução/fisiologia , Comportamento Social
10.
Ecol Evol ; 5(13): 2673-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26257879

RESUMO

Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions.

11.
PLoS One ; 9(2): e89211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586600

RESUMO

Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating 'rafts' to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Inundações , Comportamento Social , Animais , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA