Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Sci ; 97(2): 595-613, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17383973

RESUMO

Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluorinated chemicals [perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)] were administered daily via oral gavage for one, three, or five consecutive days to male Sprague-Dawley rats at single doses of 300, 300, 175, 20, or 10 mg/kg/day, respectively. Clinical chemistry, hematology, and histopathology were measured at all time points. Gene expression profiling of livers from three rats per treatment group at all time points was performed on the CodeLink Uniset Rat I Expression array. Data were analyzed in the context of a large reference toxicogenomic database containing gene expression profiles for over 630 chemicals. Genomic signatures predicting hepatomegaly and hepatic injury preceded those results for all five chemicals, and further analysis segregated chemicals into two distinct classes. The triazoles caused similar gene expression changes as other azole antifungals, particularly the induction of pregnane X receptor (PXR)-regulated xenobiotic metabolism and oxidative stress genes. In contrast, PFOA and PFOS exhibited peroxisome proliferator-activated receptor alpha agonist-like effects on genes associated with fatty acid homeostasis. PFOA and PFOS also resulted in downregulation of cholesterol biosynthesis genes, matching an in vivo decrease in serum cholesterol, and perturbation of thyroid hormone metabolism genes matched by serum thyroid hormone depletion in vivo. The concordance of in vivo observations and gene expression findings demonstrated the ability of genomics to accurately categorize chemicals, identify toxic mechanisms of action, and predict subsequent pathological responses.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Fluorocarbonos/toxicidade , Fungicidas Industriais/toxicidade , Fígado/metabolismo , Triazóis/toxicidade , Animais , Biomarcadores , Fluorocarbonos/farmacocinética , Hormônios/sangue , Fígado/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/sangue , Hormônios Tireóideos/sangue , Triazóis/farmacocinética , Aumento de Peso/efeitos dos fármacos
2.
J Biotechnol ; 119(3): 219-44, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16005536

RESUMO

Successful drug discovery requires accurate decision making in order to advance the best candidates from initial lead identification to final approval. Chemogenomics, the use of genomic tools in pharmacology and toxicology, offers a promising enhancement to traditional methods of target identification/validation, lead identification, efficacy evaluation, and toxicity assessment. To realize the value of chemogenomics information, a contextual database is needed to relate the physiological outcomes induced by diverse compounds to the gene expression patterns measured in the same animals. Massively parallel gene expression characterization coupled with traditional assessments of drug candidates provides additional, important mechanistic information, and therefore a means to increase the accuracy of critical decisions. A large-scale chemogenomics database developed from in vivo treated rats provides the context and supporting data to enhance and accelerate accurate interpretation of mechanisms of toxicity and pharmacology of chemicals and drugs. To date, approximately 600 different compounds, including more than 400 FDA approved drugs, 60 drugs approved in Europe and Japan, 25 withdrawn drugs, and 100 toxicants, have been profiled in up to 7 different tissues of rats (representing over 3200 different drug-dose-time-tissue combinations). Accomplishing this task required evaluating and improving a number of in vivo and microarray protocols, including over 80 rigorous quality control steps. The utility of pairing clinical pathology assessments with gene expression data is illustrated using three anti-neoplastic drugs: carmustine, methotrexate, and thioguanine, which had similar effects on the blood compartment, but diverse effects on hepatotoxicity. We will demonstrate that gene expression events monitored in the liver can be used to predict pathological events occurring in that tissue as well as in hematopoietic tissues.


Assuntos
Biotecnologia/métodos , Desenho de Fármacos , Indústria Farmacêutica/métodos , 5-Aminolevulinato Sintetase/biossíntese , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Automação , Ductos Biliares/patologia , Carmustina/toxicidade , Biologia Computacional , Bases de Dados como Assunto , Relação Dose-Resposta a Droga , Regulação para Baixo , Expressão Gênica , Humanos , Hiperplasia/etiologia , Fígado/efeitos dos fármacos , Masculino , Metotrexato/toxicidade , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Farmacologia/métodos , RNA/química , RNA Complementar/metabolismo , Ratos , Ratos Sprague-Dawley , Reticulócitos/citologia , Reticulócitos/metabolismo , Tioguanina/toxicidade , Fatores de Tempo , Distribuição Tecidual , Toxicologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA