Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cogn Process ; 23(2): 235-254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35099659

RESUMO

Evidence suggests that the visual evoked potential (VEP) and gamma oscillations elicited by visual stimuli reflect the balance of excitatory and inhibitory (E-I) cortical processes. As tDCS has been shown to modulate E-I balance, the current study investigated whether amplitudes of VEP components (N1 and P2) and peak gamma frequency are modulated by transcranial direct current stimulation (tDCS). Healthy adults underwent two electroencephalography (EEG) recordings while viewing stimuli designed to elicit a robust visual response. Between the two recordings, participants were randomly assigned to three tDCS conditions (anodal-, cathodal-, and sham-tDCS) or received no-tDCS. tDCS electrodes were placed over the occipital cortex (Oz) and the left cheek with an intensity of 2 mA for 10 min. Data of 39 participants were analysed for VEP amplitudes and peak gamma frequency using mixed-model ANOVAs. The results showed no main effects of tDCS in any metric. Possible explanations for the absence of tDCS effects are discussed.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Adulto , Eletrodos , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Córtex Visual/fisiologia
2.
J Cogn Enhanc ; 4(3): 235-249, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32747876

RESUMO

The non-invasive neuromodulation technique tDCS offers the promise of a low cost tool for both research and clinical applications in psychology, psychiatry and neuroscience. However, findings regarding its efficacy are often equivocal. A key issue is that the clinical and cognitive applications studied are often complex and thus effects of tDCS are difficult to predict given its known effects on the basic underlying neurophysiology, namely alterations in cortical inhibition-excitation balance. As such, it may be beneficial to assess the effects of tDCS in tasks whose performance has a clear link to cortical inhibition-excitation balance such as the visual orientation discrimination task (ODT). In prior studies in our laboratory no practise effects were found during 2 consecutive runs of the ODT, thus in the current investigation, to examine the effects of tDCS, subjects received 10 minutes of 2mA occipital tDCS (sham, anode, cathode) between a first and second run of ODT. Surprisingly, subjects' performance significantly improved in the second run of ODT compared to the first one regardless of the tDCS stimulation type they received (anodal, cathodal, or sham-tDCS). Possible causes for such an improvement could have been due to either a generic 'placebo' effect of tDCS (as all subjects received some form of tDCS) or an increased delay period between the two runs of ODT of the current study compared to our previous work (10 minutes duration required to administer tDCS as opposed to ~2 minutes in previous studies as a 'break'). As such, we tested these two possibilities with a subsequent experiment in which subjects received 2 minutes or 10 minutes delay between the 2 runs (with no tDCS) or 10 minutes of sham-tDCS. Only sham-tDCS resulted in improved performance thus these data add to a growing literature suggesting that tDCS has powerful placebo effect that may occur even in the absence of active cortical modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA