Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 523(7558): 79-82, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135451

RESUMO

Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.


Assuntos
Adaptação Fisiológica , Processos de Determinação Sexual/fisiologia , Temperatura , Animais , Austrália , Feminino , Masculino , Dados de Sequência Molecular , Répteis , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Razão de Masculinidade
2.
Chromosoma ; 125(1): 111-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26194100

RESUMO

The sex chromosomes in Sauropsida (reptiles and birds) have evolved independently many times. They show astonishing diversity in morphology ranging from cryptic to highly differentiated sex chromosomes with male (XX/XY) and female heterogamety (ZZ/ZW). Comparing such diverse sex chromosome systems thus provides unparalleled opportunities to capture evolution of morphologically differentiated sex chromosomes in action. Here, we describe chromosomal mapping of 18 microsatellite repeat motifs in eight species of Sauropsida. More than two microsatellite repeat motifs were amplified on the sex-specific chromosome, W or Y, in five species (Bassiana duperreyi, Aprasia parapulchella, Notechis scutatus, Chelodina longicollis, and Gallus gallus) of which the sex-specific chromosomes were heteromorphic and heterochromatic. Motifs (AAGG)n and (ATCC)n were amplified on the W chromosome of Pogona vitticeps and the Y chromosome of Emydura macquarii, respectively. By contrast, no motifs were amplified on the W chromosome of Christinus marmoratus, which is not much differentiated from the Z chromosome. Taken together with previously published studies, our results suggest that the amplification of microsatellite repeats is tightly associated with the differentiation and heterochromatinization of sex-specific chromosomes in sauropsids as well as in other taxa. Although some motifs were common between the sex-specific chromosomes of multiple species, no correlation was observed between this commonality and the species phylogeny. Furthermore, comparative analysis of sex chromosome homology and chromosomal distribution of microsatellite repeats between two closely related chelid turtles, C. longicollis and E. macquarii, identified different ancestry and differentiation history. These suggest multiple evolutions of sex chromosomes in the Sauropsida.


Assuntos
Galinhas/genética , Evolução Molecular , Heterocromatina , Repetições de Microssatélites , Répteis/genética , Cromossomos Sexuais , Animais , Mapeamento Cromossômico , Mecanismo Genético de Compensação de Dose , Feminino , Masculino
3.
BMC Genomics ; 17: 447, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286959

RESUMO

BACKGROUND: Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. RESULTS: By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. CONCLUSIONS: Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon.


Assuntos
Cromossomos , Evolução Molecular , Genoma , Genômica , Lagartos/genética , Animais , Galinhas/genética , Mapeamento Cromossômico , Feminino , Genômica/métodos , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Cromossomos Sexuais , Processos de Determinação Sexual/genética
4.
BMC Genomics ; 14: 899, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24344927

RESUMO

BACKGROUND: Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. RESULTS: We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. CONCLUSION: Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences.


Assuntos
Lagartos/genética , Mapeamento Físico do Cromossomo , Cromossomos Sexuais/genética , Trombospondinas/genética , Animais , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Feminino , Biblioteca Gênica , Fases de Leitura Aberta , Ovário , Retroelementos , Análise de Sequência de DNA , Análise para Determinação do Sexo
5.
PLoS One ; 14(2): e0212683, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794668

RESUMO

Telomeric sequences are generally located at the ends of chromosomes; however, they can also be found in non-terminal chromosomal regions when they are known as interstitial telomeric sequences (ITSs). Distribution of ITSs across closely related and divergent species elucidates karyotype evolution and speciation as ITSs provide evolutionary evidence for chromosome fusion. In this study, we performed physical mapping of telomeric repeats by fluorescence in situ hybridisation (FISH) in seven Australian dragon lizards thought to represent derived karyotypes of squamate reptiles and a gecko lizard with considerably different karyotypic feature. Telomeric repeats were present at both ends of all chromosomes in all species, while varying numbers of ITSs were also found on microchromosomes and in pericentromeric or centromeric regions on macrochromosomes in five lizard species examined. This suggests that chromosomal rearrangements from ancestral squamate reptiles to Iguania occurred mainly by fusion between ancestral types of acrocentric chromosomes and/or between microchromosomes, leading to appearance of bi-armed macrochromosomes, and in the reduction of microchromosome numbers. These results support the previously proposed hypothesis of karyotype evolution in squamate reptiles. In addition, we observed the presence of telomeric sequences in the similar regions to heterochromatin of the W microchromosome in Pogona barbata and Doporiphora nobbi, while sex chromosomes for the two species contained part of the nucleolar organiser regions (NORs). This likely implies that these ITSs are a part of the satellite DNA and not relics of chromosome fusions. Amplification of telomeric repeats may have involved heterochromatinisation of sex-specific W chromosomes and play a role in the organisation of the nucleolus.


Assuntos
Evolução Molecular , Lagartos/genética , Cromossomos Sexuais/genética , Telômero/genética , Animais , Austrália , Lagartos/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA