Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Res ; 216(Pt 2): 114577, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252830

RESUMO

Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 µM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 µg g-1 DW) and S/T (235.61 µg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.


Assuntos
Cádmio , Solanum lycopersicum , Cádmio/toxicidade , Cádmio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Raízes de Plantas/metabolismo , Folhas de Planta , Genótipo
2.
Physiol Plant ; 173(1): 20-44, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32602985

RESUMO

We evaluated the mechanisms that control Cd accumulation and distribution, and the mechanisms that protect the photosynthetic apparatus of Brachiaria decumbens Stapf. cv. Basilisk and Panicum maximum Jacq. cv. Massai from Cd-induced oxidative stress, as well as the effects of simulated summer or winter conditions on these mechanisms. Both grasses were grown in unpolluted and Cd-polluted Oxisol (0.63 and 3.6 mg Cd kg-1 soil, respectively) at summer and winter conditions. Grasses grown in the Cd-polluted Oxisol presented higher Cd concentration in their tissues in the winter conditions, but the shoot biomass production of both grasses was not affected by the experimental conditions. Cadmium was more accumulated in the root apoplast than the root symplast, contributing to increase the diameter and cell layers of the cambial region of both grasses. Roots of B. decumbens were more susceptible to disturbed nutrients uptake and nitrogen metabolism than roots of P. maximum. Both grasses translocated high amounts of Cd to their shoots resulting in oxidative stress. Oxidative stress in the leaves of both grasses was higher in summer than winter, but only in P. maximum superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased. However, CO2 assimilation was not affected due to the protection provided by reduced glutathione (GSH) and phytochelatins (PCs) that were more synthesized in shoots than roots. In summary, the root apoplast was not sufficiently effective to prevent Cd translocation from roots to shoot, but GSH and PCs provided good protection for the photosynthetic apparatus of both grasses.


Assuntos
Brachiaria , Panicum , Poluentes do Solo , Antioxidantes , Cádmio , Estresse Oxidativo , Raízes de Plantas/química , Tempo (Meteorologia)
4.
Ecotoxicology ; 29(5): 594-606, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333252

RESUMO

Cadmium (Cd) is probably the most damaging metal to plant species; with a long biological half-life, it can be taken up by plants, disrupting the cell homeostasis and triggering several metabolic pathways. Selenium (Se) improves plant defence systems against stressful conditions, but the biochemical antioxidant responses to Cd stress in tomato plants is poorly understood. To further address the relationship of Cd-stress responses with Se mineral uptake, Cd and Se concentration, proline content, MDA and H2O2 production, and the activity of SOD, APX, CAT and GR enzymes were analyzed in Micro-Tom (MT) plants submitted to 0.5 mM Cd. The results revealed different responses according to Se combination and Cd application. For instance, roots and leaves of MT plants treated with Se exhibited an increase in dry mass and nutritional status, exhibited lower proline content and higher APX and GR activities when compared with plants with no Se application. Plants submitted to 0.5 mM Cd, irrespective of Se exposure, exhibited lower proline, MDA and H2O2 content and higher SOD, CAT and GR activities. Selenium may improve tolerance against Cd, which allowed MT plants exhibited less oxidative damage to the cell, even under elevated Cd accumulation in their tissues. The results suggest that Se application is an efficient management technique to alleviate the deleterious effects of Cd-stress, enhancing the nutritional value and activity of ROS-scavenging enzymes in tomato plants.


Assuntos
Cádmio/toxicidade , Estresse Oxidativo/fisiologia , Selênio/metabolismo , Poluentes do Solo/toxicidade , Solanum lycopersicum/fisiologia , Antioxidantes , Glutationa , Peróxido de Hidrogênio , Oxirredução , Folhas de Planta , Raízes de Plantas
5.
Ecotoxicol Environ Saf ; 186: 109747, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31634660

RESUMO

Cadmium (Cd) contamination has generated an environmental problem worldwide, leading to harmful effects on human health and damages to plant metabolism. Selenium (Se) is non essential for plants, however it can improve plant growth and reduce the adverse effects of abiotic stress. In addition, ethylene may interplay the positive effects of Se in plants. In order to investigate the role of ethylene in Se-modulation of antioxidant defence system in response to Cd-stress, we tested the hormonal mutant Epinastic (epi) with a subset of constitutive activation of the ethylene response and Micro-Tom (MT) plants. For this purpose, Se mineral uptake, Cd and Se concentrations, pigments, malondialdeyde (MDA) and hydrogen peroxide (H2O2) contents, ethylene production, glutathione (GSH) compound, and superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) activities were analysed in MT and epi plants submitted to 0.5 mM CdCl2 and 1 µM of selenate or selenite. MT plants treated with both Se forms increased growth in the presence or not of 0.5 mM CdCl2, but not change epi growth. Both Se forms reduced Cd uptake in MT plants and cause reverse effect in epi plants. P, Mg, S, K and Zn uptake increased in epi plants with Se application, irrespective to Cd exposure. Chlorophylls and carotenoids contents decreased in both genotypes under Cd exposure, in contrast to what was observed in epi leaves in the presence of Se. When antioxidant enzymes activities were concerned, Se application increased Mn-SOD, Fe-SOD and APX activities. In the presence of Cd, MT and epi plants exhibited decreased SOD activity and increased CAT, APX and GR activities. MT and epi plants with Se supply exhibited increased APX and GR activities in the presence of Cd. Overall, these results suggest that ethylene may be involved in Se induced-defence responses, that triggers a positive response of the antioxidant system and improve growth under Cd stress. These results showed integrative roles of ethylene and Se in regulating the cell responses to stressful-conditions and, the cross-tolerance to stress could be used to manipulate ethylene regulated gene expression to induce heavy metal tolerance.


Assuntos
Antioxidantes/metabolismo , Cádmio/efeitos adversos , Etilenos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Adaptação Fisiológica , Ascorbato Peroxidases/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Exposição Ambiental , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/metabolismo , Mutação , Oxirredução , Folhas de Planta/metabolismo , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Selênio/metabolismo , Superóxido Dismutase/metabolismo
6.
Ecotoxicol Environ Saf ; 170: 578-589, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576893

RESUMO

Lettuce (Lactuca sativa L.) is known to have high cadmium (Cd) concentrations in its shoots, which makes it necessary to protect against Cd toxicity. Understanding Cd-induced physiological responses in lettuce plants can contribute to the definition of useful strategies to decrease Cd uptake. This study aimed to gain new insights into Cd-induced stress by measuring Cd bioaccumulation, nutrient composition, anatomical and ultrastructural changes, and antioxidative metabolism in three lettuce genotypes characterized as having different degrees of Cd tolerance (Vanda = low, Lidia = medium and Stela = high). Plants were grown hydroponically with Cd concentrations of 0.0 and 0.1 or 0.5 µmol L-1, for 30 days. Cadmium uptake in the lettuce genotypes assayed is controlled by the root/shoot ratio, higher root/shoot ratios allowing greater Cd uptake. The Fe and Ni content increased in shoots of the genotype Lidia, which could be associated with a decrease in oxidative stress in chloroplasts due to superoxide dismutase (SOD) isozyme activity. Cadmium-induced oxidative stress is associated with de-structuring of the phloem and xylem in roots, and starch grain and plastoglobule accumulation in chloroplasts. Lettuce genotypes that presented higher SOD and ascorbate peroxidase (APX) activity presented better preserved anatomical structures. These results suggest that genotypes with less efficient antioxidant defence in the roots tend to take up more Cd, increasing root-to-shoot Cd translocation.


Assuntos
Antioxidantes/metabolismo , Cádmio/metabolismo , Lactuca , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/metabolismo , Cádmio/toxicidade , Genótipo , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Lactuca/ultraestrutura , Estresse Oxidativo/genética , Poluentes do Solo/toxicidade , Especificidade da Espécie
7.
Ecotoxicology ; 28(9): 1046-1055, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31502144

RESUMO

This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.


Assuntos
Cádmio/toxicidade , Ciclo Celular/efeitos dos fármacos , Instabilidade Cromossômica/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Plântula/efeitos dos fármacos
8.
J Environ Manage ; 240: 84-92, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30928798

RESUMO

Distinct tomato genotypes possess different tolerance degree to cadmium (Cd), but the mechanisms behind this phenomenon are scarcely understood. To this end, the physiological, biochemical, anatomical, nutritional and molecular mechanisms associated to the plant tolerance against Cd toxicity were investigated in five tomato accessions with contrasting sensitivity to Cd exposure. Firstly, the data revealed that larger biomass loss was not always coupled to higher Cd concentration, indicating that other events, in addition to the internal Cd accumulation, impact tomato performance at early stages of Cd exposure. Secondly, the results indicated that the fine regulation of nutrient status, particularly magnesium (Mg), boron (B) and manganese (Mn), is associated to the mitigation of Cd toxicity. Magnesium status was coupled to the modulation of root development, resulting in changes in root hair formation and biomass allocation. Boron accumulation in leaves was linked to Cd toxicity, suggesting that tolerance mechanisms involved strategies to decrease or even avoid B excess in photosynthetic tissues. Disturbances in Mn status, i.e. Mn excess in leaves and Mn deficiency in roots, were also related to tomato sensitivity to Cd exposure. Thirdly, plant capacity to maintain leaf blade expansion is a relevant strategy for a better tomato development after short-term Cd exposure. Fourthly, tomato tolerance to Cd-induced stress does not depend on CAT activity enhancements in such conditions. In conclusion, tomato ability to quickly manage its nutritional status is necessary for alleviation of the Cd effects at early stages of exposure to this metal. The better understanding about tolerance mechanisms and mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crops.


Assuntos
Solanum lycopersicum , Cádmio , Magnésio , Manganês , Raízes de Plantas
9.
Phytopathology ; 108(12): 1455-1466, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29969065

RESUMO

Despite of the importance of ratoon stunting disease, little is known on the responses of sugarcane to its causal agent, the vascular bacterial endophyte Leifsonia xyli subsp. xyli. The transcriptome and proteome of young plants of a susceptible cultivar with no symptoms of stunting but with relative low and high bacterial titers were compared at 30 and 60 days after inoculation. Increased bacterial titers were associated with alterations in the expression of 267 cDNAs and in the abundance of 150 proteins involved in plant growth, hormone metabolism, signal transduction and defense responses. Some alterations are predicted to benefit the pathogen, such as the up-regulation of genes involved in the synthesis of methionine. Also, genes and proteins of the cell division cycle were all down-regulated in plants with higher titers at both times. It is hypothesized that the negative effects on cell division related to increased bacterial titers is cumulative over time and its modulation by other host and environmental factors results in the stunting symptom.


Assuntos
Actinomycetales/fisiologia , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteoma , Saccharum/imunologia , Transcriptoma , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Saccharum/genética , Saccharum/metabolismo , Saccharum/microbiologia , Transdução de Sinais
10.
Ecotoxicology ; 27(3): 245-258, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29294240

RESUMO

Despite numerous studies on cadmium (Cd) uptake and accumulation in crops, relatively little is available considering the temporal dynamic of Cd uptake and responses to stress focused on the root system. Here we highlighted the responses to Cd-induced stress in roots of two tomato genotypes contrasting in Cd-tolerance: the tolerant Pusa Ruby and the sensitive Calabash Rouge. Tomato genotypes growing in the presence of 35 µM CdCl2 exhibited a similar trend of Cd accumulation in tissues, mainly in the root system and overall plants exhibited reduction in the dry matter weight. Both genotypes showed similar trends for malondialdehyde and hydrogen peroxide accumulation with increases when exposed to Cd, being this response more pronounced in the sensitive genotype. When the antioxidant machinery is concerned, in the presence of Cd the reduced glutathione content was decreased in roots while ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) activities were increased in the presence of Cd in the tolerant genotype. Altogether these results suggest APX, GR and GST as the main players of the antioxidant machinery against Cd-induced oxidative stress.


Assuntos
Antioxidantes/metabolismo , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Solanum lycopersicum/metabolismo , Genótipo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Raízes de Plantas/enzimologia , Estresse Fisiológico , Fatores de Tempo
11.
Ecotoxicology ; 27(10): 1293-1302, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30259382

RESUMO

Cadmium (Cd) toxicity is frequently coupled to its accumulation in plants, but not always the highest Cd concentration triggers the worst damages, indicating that additional events influence the magnitude of Cd side-effects. We investigated the early mechanisms behind the differential Cd-induced impacts on plant development of four tomato accessions with contrasting tolerance to Cd toxicity. At organ level, the highest Cd concentration was not associated with the largest biomass losses. In leaves, changes in superoxide dismutase and catalase activities were not related to differences in Cd concentration, which was unable to provoke H2O2 overproduction on the sixth day of plant exposure to this metal. Further investigation in the mineral profile revealed that magnitude of Cd toxicity depends probably on synergic effects from increased B status, in addition to the own Cd accumulation. Furthermore, disbalances in Mn status (i.e., excess in leaves and deficiency in roots) may enhance Cd toxicity degree. According to data, however, the low magnesium (Mg) status can be linked to tomato tolerance against Cd toxicity. In conclusion, the tomato tolerance degree under short-Cd exposure depends on actively, finely regulation of mineral homeostasis that results in different development of plant organs. The better understanding on the mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crop yield.


Assuntos
Cádmio/toxicidade , Poluentes do Solo/toxicidade , Solanum lycopersicum/fisiologia , Catalase/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Oxirredução , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Plântula/efeitos dos fármacos , Superóxido Dismutase/metabolismo
13.
Biometals ; 28(5): 803-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26077192

RESUMO

Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Desintoxicação Metabólica Fase I/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Superóxido Dismutase/metabolismo
14.
Environ Monit Assess ; 187(4): 160, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25740686

RESUMO

Soil acidity and the associated problems of aluminum (Al) toxicity and scarce exchangeable bases are typically the most important limiting factors of agricultural yield in wet tropical regions. The goals of this study were to test how soil lime rates affect the forms and distribution of Al in the soil fractions and how different levels of bioavailable Al affect two tomato genotypes grown in wet tropical soils. The tomato genotypes CNPH 0082 and Calabash Rouge were grown in two wet tropical soils in a greenhouse. Soil lime rates of 0, 560, and 2240 mg kg(-1) soil (clay soil) and 0, 280, and 1120 mg kg(-1) soil (sandy soil) were applied to modify Al concentrations. Dry mass production and Al concentrations were determined in shoots and roots. Al was fractionated in the soil, and the soil solution was speciated after cultivation. The Calabash Rouge genotype possesses mechanisms to tolerate Al3+, absorbed less Al, exhibited smaller reduction in growth, and lower Al concentrations in plant parts than the CNPH 0082. Increased soil pH reduced the exchangeable Al fraction and increased the fraction mainly linked to organic matter. Al in the soil in the form of complexes with organic compounds and Al(SO4)+ (at the highest lime rate) did not affect plant development. Soil acidity can be easily neutralized by liming the soil, which transforms toxic Al3+ in the soil into forms that do not harm tomato plants, thereby avoiding oxidative stress in the plants. Al-induced stress in tomatoes varies with genotypes and soil type.


Assuntos
Alumínio/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Solo/química , Solanum lycopersicum/crescimento & desenvolvimento , Agricultura , Compostos de Cálcio , Estresse Oxidativo , Óxidos , Raízes de Plantas/química , Plantas
15.
Environ Monit Assess ; 187(3): 73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25647795

RESUMO

Tropical and subtropical soils are usually acidic and have high concentrations of aluminum (Al). Aluminum toxicity in plants is caused by the high affinity of the Al cation for cell walls, membranes, and metabolites. In this study, the response of the antioxidant-enzymatic system to Al was examined in two tomato genotypes: Solanum lycopersicum var. esculentum (Calabash Rouge) and Solanum lycopersicum var. cerasiforme (CNPH 0082) grown in tropical soils with varying levels of Al. Plant growth; activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), and glutathione reductase (GR) enzymes; stress-indicating compounds (malondialdehyde (MDA) and hydrogen peroxide); and morphology (root length and surface area) were analyzed. Increased levels of Al in soils were correlated with reduced shoot and root biomass and with reduced root length and surface area. Calabash Rouge exhibited low Al concentrations and increased growth in soils with the highest levels of Al. Plants grown in soils with high availability of Al exhibited higher levels of stress indicators (MDA and hydrogen peroxide) and higher enzyme activity (CAT, APX, GPOX, and GR). Calabash Rouge absorbed less Al from soils than CNPH 0082, which suggests that the genotype may possess mechanisms for Al tolerance.


Assuntos
Alumínio/toxicidade , Estresse Oxidativo , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Alumínio/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Monitoramento Ambiental , Genótipo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Malondialdeído/metabolismo , Oxirredução , Peroxidase/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Solo , Superóxido Dismutase/metabolismo
16.
Environ Sci Pollut Res Int ; 31(1): 215-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049693

RESUMO

Given the increasing problems of water and soil contamination with cadmium (Cd), it is necessary to investigate the genetic and physiological mechanisms of tolerance to this metal in different crops, which can be used for the development of effective crop management strategies. This study aimed to assess the potential of grafting as a strategy to increase Cd tolerance and reduce absorption in tomato by evaluating the contribution of the root system and aerial parts for tolerance mechanisms. To this end, reciprocal grafting and diallel analyses were used to examine the combining ability of contrasting tomato genotypes under exposure to 0 and 35 µM CdCl2. Roots and above-ground parts were found to have specific mechanisms of Cd tolerance, absorption, and accumulation. Grafting of the USP15 genotype (scion) on USP16 (rootstock) provided the greatest synergism, increasing the tolerance index and reducing the translocation index and Cd accumulation in leaves. USP163 exhibited potential for breeding programs that target genotypes with high Cd tolerance. In tomato, both Cd tolerance and accumulation in aerial parts are genotype- and tissue-specific, controlled by a complex system of complementary mechanisms that need to be better understood to support the development of strategies to reduce Cd contamination in aerial parts.


Assuntos
Poluentes do Solo , Solanum lycopersicum , Cádmio , Raízes de Plantas , Melhoramento Vegetal , Água
17.
Plant Physiol Biochem ; 208: 108446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422579

RESUMO

Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.


Assuntos
Compostos de Cálcio , Eucalyptus , Óxidos , Plântula , Plântula/metabolismo , Eucalyptus/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Solo , Zinco/metabolismo
18.
Sci Total Environ ; 892: 164610, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270021

RESUMO

Cadmium (Cd) is a highly toxic and carcinogenic pollutant that poses a threat to human and animal health by affecting several major organ systems. Urbanization and human activities have led to significant increases in Cd concentration in the environment, including in agroecosystems. To protect against the harmful effects of Cd, efforts are being made to promote safe crop production and to clean up Cd-contaminated agricultural lands and water, reducing Cd exposure through the consumption of contaminated agricultural products. There is a need for management strategies that can improve plant Cd tolerance and reduce Cd accumulation in crop plant tissues, all of which involve understanding the impacts of Cd on plant physiology and metabolism. Grafting, a longstanding plant propagation technique, has been shown to be a useful approach for studying the effects of Cd on plants, including insights into the signaling between organs and organ-specific modulation of plant performance under this form of environmental stress. Grafting can be applied to the large majority of abiotic and biotic stressors. In this review, we aim to highlight the current state of knowledge on the use of grafting to gain insights into Cd-induced effects as well as its potential applicability in safe crop production and phytoremediation. In particular, we emphasize the utility of heterograft systems for assessment of Cd accumulation, biochemical and molecular responses, and tolerance in crop and other plant species under Cd exposure, as well as potential intergenerational effects. We outline our perspectives and future directions for research in this area and the potential practical applicability of plant grafting, with attention to the most obvious gaps in knowledge. We aim at inspiring researchers to explore the potential of grafting for modulating Cd tolerance and accumulation and for understanding the mechanisms of Cd-induced responses in plants for both agricultural safety and phytoremediation purposes.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/metabolismo , Plantas/metabolismo , Biodegradação Ambiental , Estresse Fisiológico , Fenômenos Fisiológicos Vegetais , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo
19.
Environ Sci Pollut Res Int ; 30(41): 93846-93861, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523087

RESUMO

Bioremediation of toxic metals is a feasible and low-cost remediation tool to reduce metal contamination. Plant-fungus interactions can improve this technique. Eichhornia crassipes (Mart.) Solms is a macrophyte reported to bioremediate contaminated water. Thus, the present study aimed to isolate endophytic fungi from E. crassipes, select a highly cadmium (Cd) tolerant isolate and evaluate its bioremediation potential. This was evaluated by (1) the fungus tolerance and capacity to accumulate Cd; (2) Cd effects on cell morphology (using SEM and TEM) and on the fungal antioxidant defense system, as well as (3) the effect on model plant Solanum lycopersicum L. cultivar Calabash Rouge, inoculated with the endophyte fungus and exposed to Cd. Our results selected the endophyte Mucor sp. CM3, which was able to tolerate up to 1000 g/L of Cd and to accumulate 900 mg of Cd/g of biomass. Significant changes in Mucor sp. CM3 morphology were observed when exposed to high Cd concentrations, retaining this metal both in its cytoplasm and in its cell wall, which may be linked to detoxification and metal sequestration mechanisms related to the formation of Cd-GSH complexes. In addition, Cd stress induced the activation of all tested antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) - in this endophytic fungus. Moreover, when inoculated in tomato plants, this fungus promoted plant growth (in treatments without Cd) and induced an increased metal translocation to plant shoot, showing its potential to increase metal bioremediation. Therefore, this study indicates that the isolated endophyte Mucor sp. CM3 can be applied as a tool in different plant conditions, improving plant bioremediation and reducing the environmental damage caused by Cd, while also promoting plant growth in the absence of contaminants.


Assuntos
Eichhornia , Poluentes do Solo , Cádmio/toxicidade , Antioxidantes/farmacologia , Mucor , Biodegradação Ambiental , Metais/farmacologia , Endófitos , Poluentes do Solo/análise
20.
Chemosphere ; 343: 140235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734497

RESUMO

Evidence linking the toxicity of bisphenol A (BPA) to environmental and public-health issues has led to restrictions on its use. This compound has been gradually replaced with analogues proposed as a safer alternative, normally bisphenol F (BPF) and bisphenol S (BPS), but these substitutes are structurally almost identical to BPA, suggesting they may pose similar risks. The effects of BPA and these analogues were compared for antioxidant activity, lipid peroxidation, free-radical generation, photosynthetic pigments, and chlorophyll fluorescence in Salvinia biloba Raddi (S. biloba) plants exposed to environmentally relevant and sublethal concentrations (1, 10, 50, 100 and 150 µM). Bisphenol exposure promoted alterations in most of the physiological parameters investigated, with BPS toxicity differing slightly from that of the analogues. Furthermore, S. biloba removed similar levels of BPA and BPF from aqueous solutions with ≈70% removed at the 150 µM concentration, while BPS was less effectively removed, with only 23% removed at 150 µM. These findings show that high concentrations of bisphenols (10≥) are toxic to S. biloba, and even typical environmental levels (≤1 µM) can induce metabolic changes in plants, bringing to light that both BPA and its substitutes BPF and BPS pose risks to aquatic ecosystems.


Assuntos
Ecossistema , Fenóis , Fenóis/toxicidade , Fenóis/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA