Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897841

RESUMO

Triple-negative breast cancer is the most common and most deadly cancer among women. Radiation is a mainstay of treatment, administered after surgery, and used in the hope that any remaining cancer cells will be destroyed. While the cancer cell response is normally the focus of radiation therapy, little is known about the tumor microenvironment response after irradiation. It is widely reported that increased collagen expression and deposition are associated with cancer progression and poor prognosis in breast cancer patients. Aside from the classical fibrotic response, ratios of collagen isoforms have not been studied in a radiated tumor microenvironment. Here, we created one healthy co-culture of stromal fibroblasts and adipose-derived stem cells, and one triple-negative breast cancer co-culture, made of stromal fibroblasts, adipose derived stem cells, and triple-negative breast cancer cells. After irradiation, growth and decellularization of co-cultures, we reseeded the breast cancer cells for 24 h and analyzed the samples using mass spectrometry. Proteomic analysis revealed that collagen VI, a highly oncogenic collagen isoform linked to breast cancer, was decreased in the irradiated cancer co-culture. This indicates that the anti-cancer impact of radiation may be not only cell ablative, but also influential in creating a less oncogenic microenvironment.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Proteômica , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
2.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924260

RESUMO

The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-ß signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.


Assuntos
Irradiação Craniana , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Metaboloma , Neurogênese/genética , Neurogênese/efeitos da radiação , Proteoma , Transcriptoma , Animais , Biologia Computacional/métodos , Irradiação Craniana/efeitos adversos , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Doses de Radiação , Transdução de Sinais
3.
J Proteome Res ; 19(1): 337-345, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31657930

RESUMO

The impact of low-dose ionizing radiation (IR) on the human brain has recently attracted attention due to the increased use of IR for diagnostic purposes. The aim of this study was to investigate low-dose radiation response in the hippocampus. Female B6C3F1 mice were exposed to total body irradiation with 0 (control), 0.063, 0.125, or 0.5 Gy. Quantitative label-free proteomic analysis of the hippocampus was performed after 24 months. CREB signaling and CREB-associated pathways were affected at all doses. The lower doses (0.063 and 0.125 Gy) induced the CREB pathway, whereas the exposure to 0.5 Gy deactivated CREB. Similarly, the lowest dose (0.063 Gy) was anti-inflammatory, reducing the number of activated microglia. In contrast, induction of activated microglia and reactive astroglia was found at 0.5 Gy, suggesting increased inflammation and astrogliosis, respectively. The apoptotic markers BAX and cleaved CASP-3 and oxidative stress markers were increased only at the highest dose. Since the activated CREB pathway plays a central role in learning and memory, these data suggest neuroprotection at the lowest dose (0.063 Gy) but neurodegeneration at 0.5 Gy. The response to 0.5 Gy resembles alterations found in healthy aging and thus may represent radiation-induced accelerated aging of the brain.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Inflamação/etiologia , Camundongos Endogâmicos , Plasticidade Neuronal/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Carbonilação Proteica/efeitos da radiação , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Irradiação Corporal Total
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957660

RESUMO

Epidemiological studies on workers employed at the Mayak plutonium enrichment plant have demonstrated an association between external gamma ray exposure and an elevated risk of ischemic heart disease (IHD). In a previous study using fresh-frozen post mortem samples of the cardiac left ventricle of Mayak workers and non-irradiated controls, we observed radiation-induced alterations in the heart proteome, mainly downregulation of mitochondrial and structural proteins. As the control group available at that time was younger than the irradiated group, we could not exclude age as a confounding factor. To address this issue, we have now expanded our study to investigate additional samples using archival formalin-fixed paraffin-embedded (FFPE) tissue. Importantly, the control group studied here is older than the occupationally exposed (>500 mGy) group. Label-free quantitative proteomics analysis showed that proteins involved in the lipid metabolism, sirtuin signaling, mitochondrial function, cytoskeletal organization, and antioxidant defense were the most affected. A histopathological analysis elucidated large foci of fibrotic tissue, myocardial lipomatosis and lymphocytic infiltrations in the irradiated samples. These data highlight the suitability of FFPE material for proteomics analysis. The study confirms the previous results emphasizing the role of adverse metabolic changes in the radiation-associated IHD. Most importantly, it excludes age at the time of death as a confounding factor.


Assuntos
Isquemia Miocárdica/metabolismo , Plutônio/efeitos adversos , Proteoma/metabolismo , Proteoma/efeitos da radiação , Cromatografia Líquida , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Formaldeído/química , Humanos , Metabolismo dos Lipídeos/efeitos da radiação , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Isquemia Miocárdica/epidemiologia , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/patologia , Exposição Ocupacional , Inclusão em Parafina , Análise de Componente Principal , Mapas de Interação de Proteínas , Proteômica/métodos , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Sirtuínas/metabolismo , Espectrometria de Massas em Tandem , Fixação de Tecidos
5.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230970

RESUMO

Normal tissue toxicity is a dose-limiting factor in radiation therapy. Therefore, a detailed understanding of the normal tissue response to radiation is necessary to predict the risk of normal tissue toxicity and to development strategies for tissue protection. One component of normal tissue that is continuously exposed during therapeutic irradiation is the circulating population of peripheral blood mononuclear cells (PBMC). PBMCs are highly sensitive to ionizing radiation (IR); however, little is known about how IR affects the PBMC response on a systemic level. It was the aim of this study to investigate whether IR was capable to induce changes in the composition and function of extracellular vesicles (EVs) secreted from PBMCs after radiation exposure to different doses. Therefore, whole blood samples from healthy donors were exposed to X-ray radiation in the clinically relevant doses of 0, 0.1, 2 or 6 Gy and PBMC-secreted EVs were isolated 72 h later. Proteome and miRNome analysis of EVs as well as functional studies were performed. Secreted EVs showed a dose-dependent increase in the number of significantly deregulated proteins and microRNAs. For both, proteome and microRNA data, principal component analysis showed a dose-dependent separation of control and exposed groups. Integrated pathway analysis of the radiation-regulated EV proteins and microRNAs consistently predicted an association of deregulated molecules with apoptosis, cell death and survival. Functional studies identified endothelial cells as an efficient EV recipient system, in which irradiation of recipient cells further increased the uptake. Furthermore an apoptosis suppressive effect of EVs from irradiated PBMCs in endothelial recipient cells was detected. In summary, this study demonstrates that IR modifies the communication between PBMCs and endothelial cells. EVs from irradiated PBMC donors were identified as transmitters of protective signals to irradiated endothelial cells. Thus, these data may lead to the discovery of biomarker candidates for radiation dosimetry and even more importantly, they suggest EVs as a novel systemic communication pathway between irradiated normal, non-cancer tissues.


Assuntos
Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Exposição à Radiação , Vesículas Secretórias/metabolismo , Apoptose/efeitos da radiação , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Humanos , MicroRNAs/genética , Proteoma/metabolismo , Radiação Ionizante , Radioterapia/métodos
6.
Anal Biochem ; 584: 113390, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401005

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane-bound organelles that have generated interest as they reflect the physiological condition of their source. Mass spectrometric (MS) analyses of protein cargo of EVs may lead to the discovery of biomarkers for diseases. However, for a comprehensive MS-based proteomics analysis, an optimal lysis of the EVs is required. Six methods for the protein extraction from EVs secreted by the head and neck cell line BHY were compared. Commercial radioimmunoprecipitation assay (RIPA) buffer outperformed the other buffers investigated in this study (Tris-SDS, Tris-Triton, GuHCl, urea-thiourea, and commercial Cell-lysis buffer). Following lysis with RIPA buffer, 310 proteins and 1469 peptides were identified using LTQ OrbitrapXL mass spectrometer. Among these, 86% of proteins and 72% of peptides were identified in all three replicates. In the case of other buffers, Tris-Triton identified on average 277 proteins, Cell-lysis buffer 257 proteins, and Tris-SDS, GuHCl and urea-thiourea each 267 proteins. In total, 399 proteins including 74 of the top EV markers (Exocarta) were identified, the most of the latter (73) using RIPA. The proteins exclusively identified using RIPA represented all Gene Ontology cell compartments. This study suggests that RIPA is an optimal lysis buffer for EVs in combination with MS.


Assuntos
Fracionamento Químico/métodos , Vesículas Extracelulares/metabolismo , Espectrometria de Massas , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Soluções Tampão , Linhagem Celular Tumoral , Humanos
7.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652604

RESUMO

Chronic exposure to low-dose ionizing radiation is associated with an increased risk of cardiovascular disease. Alteration in energy metabolism has been suggested to contribute to radiation-induced heart pathology, mitochondrial dysfunction being a hallmark of this disease. The goal of this study was to investigate the regulatory role of acetylation in heart mitochondria in the long-term response to chronic radiation. ApoE-deficient C57Bl/6J mice were exposed to low-dose-rate (20 mGy/day) gamma radiation for 300 days, resulting in a cumulative total body dose of 6.0 Gy. Heart mitochondria were isolated and analyzed using quantitative proteomics. Radiation-induced proteome and acetylome alterations were further validated using immunoblotting, enzyme activity assays, and ELISA. In total, 71 proteins showed peptides with a changed acetylation status following irradiation. The great majority (94%) of the hyperacetylated proteins were involved in the TCA cycle, fatty acid oxidation, oxidative stress response and sirtuin pathway. The elevated acetylation patterns coincided with reduced activity of mitochondrial sirtuins, increased the level of Acetyl-CoA, and were accompanied by inactivation of major cardiac metabolic regulators PGC-1 alpha and PPAR alpha. These observations suggest that the changes in mitochondrial acetylation after irradiation is associated with impairment of heart metabolism. We propose a novel mechanism involved in the development of late cardiac damage following chronic irradiation.


Assuntos
Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuínas/genética , Irradiação Corporal Total/efeitos adversos , Acetilação , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos da radiação , Proteínas Mitocondriais/efeitos da radiação , Miócitos Cardíacos/efeitos da radiação , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
8.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817026

RESUMO

In children, ketamine sedation is often used during radiological procedures. Combined exposure of ketamine and radiation at doses that alone did not affect learning and memory induced permanent cognitive impairment in mice. The aim of this study was to elucidate the mechanism behind this adverse outcome. Neonatal male NMRI mice were administered ketamine (7.5 mg kg-1) and irradiated (whole-body, 100 mGy or 200 mGy, 137Cs) one hour after ketamine exposure on postnatal day 10. The control mice were injected with saline and sham-irradiated. The hippocampi were analyzed using label-free proteomics, immunoblotting, and Golgi staining of CA1 neurons six months after treatment. Mice co-exposed to ketamine and low-dose radiation showed alterations in hippocampal proteins related to neuronal shaping and synaptic plasticity. The expression of brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein, and postsynaptic density protein 95 were significantly altered only after the combined treatment (100 mGy or 200 mGy combined with ketamine, respectively). Increased numbers of basal dendrites and branching were observed only after the co-exposure, thereby constituting a possible reason for the displayed alterations in behavior. These data suggest that the risk of radiation-induced neurotoxic effects in the pediatric population may be underestimated if based only on the radiation dose.


Assuntos
Região CA1 Hipocampal/patologia , Ketamina/toxicidade , Neurônios/patologia , Neurônios/efeitos da radiação , Radiação Ionizante , Animais , Animais Recém-Nascidos , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos dos fármacos , Proteoma/metabolismo
9.
J Proteome Res ; 17(4): 1677-1689, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29560722

RESUMO

High-dose ionizing radiation is known to induce adverse effects such as inflammation and fibrosis in the heart. Transcriptional regulators PPARα and TGFß are known to be involved in this radiation response. PPARα, an anti-inflammatory transcription factor controlling cardiac energy metabolism, is inactivated by irradiation. The pro-inflammatory and pro-fibrotic TGFß is activated by irradiation via SMAD-dependent and SMAD-independent pathways. The goal of this study was to investigate how altering the level of PPARα influences the radiation response of these signaling pathways. For this purpose, we used genetically modified C57Bl/6 mice with wild type (+/+), heterozygous (+/-) or homozygous (-/-) PPARα genotype. Mice were locally irradiated to the heart using doses of 8 or 16 Gy; the controls were sham-irradiated. The heart tissue was investigated using label-free proteomics 20 weeks after the irradiation and the predicted pathways were validated using immunoblotting, ELISA, and immunohistochemistry. The heterozygous PPARα mice showed most radiation-induced changes in the cardiac proteome, whereas the homozygous PPARα mice showed the least changes. Irradiation induced SMAD-dependent TGFß signaling independently of the PPARα status, but the presence of PPARα was necessary for the activation of the SMAD-independent pathway. These data indicate a central role of PPARα in cardiac response to ionizing radiation.


Assuntos
Coração/efeitos da radiação , Miocárdio/metabolismo , PPAR alfa/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Genótipo , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , PPAR alfa/genética , Proteômica , Transdução de Sinais , Proteínas Smad/metabolismo
10.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327260

RESUMO

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Assuntos
Catarata/genética , Lesões Experimentais por Radiação/genética , Animais , Catarata/etiologia , Aberrações Cromossômicas/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Estimativa de Kaplan-Meier , Masculino , Camundongos , Lesões Experimentais por Radiação/etiologia , Proteção Radiológica , Medição de Risco , Telômero/efeitos da radiação , Fatores de Tempo
11.
J Proteome Res ; 16(1): 307-318, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27805817

RESUMO

Epidemiological data from patients undergoing radiotherapy for thoracic tumors clearly show the damaging effect of ionizing radiation on cardiovascular system. The long-term impairment of heart function and structure after local high-dose irradiation is associated with systemic inflammatory response, contraction impairment, microvascular damage, and cardiac fibrosis. The goal of the present study was to investigate molecular mechanisms involved in this process. C57BL/6J mice received a single X-ray dose of 16 Gy given locally to the heart at the age of 8 weeks. Radiation-induced changes in the heart transcriptome and proteome were investigated 40 weeks after the exposure. The omics data were analyzed by bioinformatics tools and validated by immunoblotting. Integrated network analysis of transcriptomics and proteomics data elucidated the signaling pathways that were similarly affected at gene and protein level. Analysis showed induction of transforming growth factor (TGF) beta signaling but inactivation of peroxisome proliferator-activated receptor (PPAR) alpha signaling in irradiated heart. The putative mediator role of mitogen-activated protein kinase cascade linking PPAR alpha and TGF beta signaling was supported by data from immunoblotting and ELISA. This study indicates that both signaling pathways are involved in radiation-induced heart fibrosis, metabolic disordering, and impaired contractility, a pathophysiological condition that is often observed in patients that received high radiation doses in thorax.


Assuntos
Fibrose Endomiocárdica/genética , Coração/efeitos da radiação , PPAR alfa/genética , Proteoma/genética , Transcriptoma , Fator de Crescimento Transformador beta/genética , Animais , Biologia Computacional , Fibrose Endomiocárdica/etiologia , Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/patologia , Raios gama/efeitos adversos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR alfa/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
12.
J Proteome Res ; 16(10): 3903-3916, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28849662

RESUMO

Radiation is the most common treatment of cancer. Minimizing the normal tissue injury, especially the damage to vascular endothelium, remains a challenge. This study aimed to analyze direct and indirect radiation effects on the endothelium by investigating mechanisms of signal transfer from irradiated to nonirradiated endothelial cells by means of secreted proteins. Human coronary artery endothelial cells (HCECest2) undergo radiation-induced senescence in vitro 14 days after exposure to 10 Gy X-rays. Proteomics analysis was performed on HCECest2 14 days after irradiation with X-ray doses of 0 Gy (control) or 10 Gy using label-free technology. Additionally, the proteomes of control and radiation-induced secretomes, and those of nonirradiated HCECest2 exposed for 24 h to secreted proteins of either condition were measured. Key changes identified by proteomics and bioinformatics were validated by immunoblotting, ELISA, bead-based multiplex assays, and targeted transcriptomics. The irradiated cells, their secretome, and the nonirradiated recipient cells showed similar inflammatory response, characterized by induction of interferon type I-related proteins and activation of the STAT3 pathway. These data indicate that irradiated endothelial cells may adversely affect nonirradiated surrounding cells via senescence-associated secretory phenotype. This study adds to our knowledge of the pathological background of radiation-induced cardiovascular disease.


Assuntos
Inflamação/genética , Neoplasias/radioterapia , Proteoma/genética , Radioterapia/efeitos adversos , Fator de Transcrição STAT3/genética , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/efeitos da radiação , Relação Dose-Resposta à Radiação , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Inflamação/etiologia , Inflamação/patologia , Masculino , Neoplasias/complicações , Neoplasias/genética , Proteoma/efeitos da radiação , Proteômica/métodos , Transdução de Sinais/efeitos da radiação
13.
Expert Rev Proteomics ; 14(11): 987-996, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28976223

RESUMO

INTRODUCTION: Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Proteoma , Lesões por Radiação , Animais , Biomarcadores , Humanos , Proteômica , Radiação Ionizante
14.
BMC Bioinformatics ; 17(1): 212, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170263

RESUMO

BACKGROUND: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .


Assuntos
Encéfalo/efeitos da radiação , Radiação Ionizante , Pesquisa , Software , Relação Dose-Resposta à Radiação , Humanos
15.
J Proteome Res ; 14(2): 1203-19, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25590149

RESUMO

Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood. In the present study, 10-week-old C57Bl/6 mice received local X-ray heart doses of 8 or 16 Gy and were sacrificed after 16 weeks; the controls were sham-irradiated. The cardiac microvascular endothelial cells were isolated from the heart tissue using streptavidin-CD31-coated microbeads. The cells were lysed and proteins were labeled with duplex isotope-coded protein label methodology for quantification. All samples were analyzed by LC-ESI-MS/MS and Proteome Discoverer software. The proteomics data were further studied by bioinformatics tools and validated by targeted transcriptomics, immunoblotting, immunohistochemistry, and serum profiling. Radiation-induced endothelial dysfunction was characterized by impaired energy metabolism and perturbation of the insulin/IGF-PI3K-Akt signaling pathway. The data also strongly suggested premature endothelial senescence, increased oxidative stress, decreased NO availability, and enhanced inflammation as main causes of radiation-induced long-term vascular dysfunction. Detailed data on molecular mechanisms of radiation-induced vascular injury as compiled here are essential in developing radiotherapy strategies that minimize cardiovascular complications.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Proteômica , Transcriptoma , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/fisiopatologia , Cromatografia Líquida , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
16.
J Proteome Res ; 14(1): 366-73, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25299163

RESUMO

Tens of thousands of people are being exposed daily to environmental low-dose gamma radiation. Epidemiological data indicate that such low radiation doses may negatively affect liver function and result in the development of liver disease. However, the biological mechanisms behind these adverse effects are unknown. The aim of this study was to investigate radiation-induced damage in the liver after low radiation doses. Neonatal male NMRI mice were exposed to total body irradiation on postnatal day 10 using acute single doses ranging from 0.02 to 1.0 Gy. Early (1 day) and late (7 months) changes in the liver proteome were tracked using isotope-coded protein label technology and quantitative mass spectrometry. Our data indicate that low and moderate radiation doses induce an immediate inhibition of the glycolysis pathway and pyruvate dehydrogenase availability in the liver. Furthermore, they lead to significant long-term alterations in lipid metabolism and increased liver inflammation accompanying inactivation of the transcription factor peroxisome proliferator-activated receptor alpha. This study contributes to the understanding of the potential risk of liver damage in populations environmentally exposed to ionizing radiation.


Assuntos
Animais Recém-Nascidos/metabolismo , Fígado/metabolismo , Proteoma/metabolismo , Proteoma/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Animais , Biologia Computacional , Relação Dose-Resposta à Radiação , Immunoblotting , Metabolismo dos Lipídeos/efeitos da radiação , Fígado/efeitos da radiação , Masculino , Camundongos , Proteômica , Radiação Ionizante , Espectrometria de Massas em Tandem
17.
Radiat Environ Biophys ; 53(1): 31-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24105449

RESUMO

Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics.


Assuntos
Proteômica/métodos , Radiobiologia/métodos , Animais , Líquidos Corporais/metabolismo , Líquidos Corporais/efeitos da radiação , Humanos , Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteoma/efeitos da radiação
18.
Int J Radiat Biol ; 100(4): 505-526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180039

RESUMO

PURPOSE: The discovery of X-rays was followed by a variety of attempts to treat infectious diseases and various other non-cancer diseases with ionizing radiation, in addition to cancer. There has been a recent resurgence of interest in the use of such radiotherapy for non-cancer diseases. Non-cancer diseases for which use of radiotherapy has currently been proposed include refractory ventricular tachycardia, neurodegenerative diseases (e.g. Alzheimer's disease and dementia), and Coronavirus Disease 2019 (COVID-19) pneumonia, all with ongoing clinical studies that deliver radiation doses of 0.5-25 Gy in a single fraction or in multiple daily fractions. In addition to such non-cancer effects, historical indications predominantly used in some countries (e.g. Germany) include osteoarthritis and degenerative diseases of the bones and joints. This narrative review gives an overview of the biological rationale and ongoing preclinical and clinical studies for radiotherapy proposed for various non-cancer diseases, discusses the plausibility of the proposed biological rationale, and considers the long-term radiation risks of cancer and non-cancer diseases. CONCLUSIONS: A growing body of evidence has suggested that radiation represents a double-edged sword, not only for cancer, but also for non-cancer diseases. At present, clinical evidence has shown some beneficial effects of radiotherapy for ventricular tachycardia, but there is little or no such evidence of radiotherapy for other newly proposed non-cancer diseases (e.g. Alzheimer's disease, COVID-19 pneumonia). Patients with ventricular tachycardia and COVID-19 pneumonia have thus far been treated with radiotherapy when they are an urgent life threat with no efficient alternative treatment, but some survivors may encounter a paradoxical situation where patients were rescued by radiotherapy but then get harmed by radiotherapy. Further studies are needed to justify the clinical use of radiotherapy for non-cancer diseases, and optimize dose to diseased tissue while minimizing dose to healthy tissue.


Assuntos
Doença de Alzheimer , COVID-19 , Osteoartrite , Taquicardia Ventricular , Humanos , Dosagem Radioterapêutica , Doença de Alzheimer/radioterapia , COVID-19/radioterapia , Radioterapia/efeitos adversos
19.
Int J Radiat Biol ; 100(7): 982-995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718325

RESUMO

PURPOSE: The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION: By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.


Assuntos
Rotas de Resultados Adversos , Humanos , Medição de Risco , Proteção Radiológica/métodos , Internacionalidade , Lesões por Radiação/prevenção & controle , Lesões por Radiação/etiologia
20.
Proteomics ; 13(7): 1096-107, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23349028

RESUMO

Chronic low-dose ionizing radiation induces cardiovascular disease in human populations but the mechanism is largely unknown. We suggested that chronic radiation exposure may induce endothelial cell senescence that is associated with vascular damage in vivo. We investigated whether chronic radiation exposure is causing a change in the onset of senescence in endothelial cells in vitro. Indeed, when exposed to continuous low-dose rate gamma radiation (4.1 mGy/h), primary human umbilical vein endothelial cells (HUVECs) initiated senescence much earlier than the nonirradiated control cells. We investigated the changes in the protein expression of HUVECs before and during the onset of radiation-induced senescence. Cellular proteins were quantified using isotope-coded protein label technology after 1, 3, and 6 weeks of radiation exposure. Several senescence-related biological pathways were influenced by radiation, including cytoskeletal organization, cell-cell communication and adhesion, and inflammation. Immunoblot analysis showed an activation of the p53/p21 pathway corresponding to the progressing senescence. Our data suggest that chronic radiation-induced DNA damage and oxidative stress result in induction of p53/p21 pathway that inhibits the replicative potential of HUVECs and leads to premature senescence. This study contributes to the understanding of the increased risk of cardiovascular diseases seen in populations exposed to chronic low-dose irradiation.


Assuntos
Senescência Celular/efeitos da radiação , Raios gama , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Proteômica/métodos , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta à Radiação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Immunoblotting , Redes e Vias Metabólicas/efeitos da radiação , Proteoma/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA