Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38982642

RESUMO

Inferring cell type proportions from bulk transcriptome data is crucial in immunology and oncology. Here, we introduce guided LDA deconvolution (GLDADec), a bulk deconvolution method that guides topics using cell type-specific marker gene names to estimate topic distributions for each sample. Through benchmarking using blood-derived datasets, we demonstrate its high estimation performance and robustness. Moreover, we apply GLDADec to heterogeneous tissue bulk data and perform comprehensive cell type analysis in a data-driven manner. We show that GLDADec outperforms existing methods in estimation performance and evaluate its biological interpretability by examining enrichment of biological processes for topics. Finally, we apply GLDADec to The Cancer Genome Atlas tumor samples, enabling subtype stratification and survival analysis based on estimated cell type proportions, thus proving its practical utility in clinical settings. This approach, utilizing marker gene names as partial prior information, can be applied to various scenarios for bulk data deconvolution. GLDADec is available as an open-source Python package at https://github.com/mizuno-group/GLDADec.


Assuntos
Software , Humanos , Perfilação da Expressão Gênica/métodos , Algoritmos , Transcriptoma , Biologia Computacional/métodos , Neoplasias/genética , Biomarcadores Tumorais/genética , Marcadores Genéticos
2.
J Chem Inf Model ; 63(2): 474-483, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36635231

RESUMO

Predicting the novel effects of drugs based on information about approved drugs can be regarded as a recommendation system. Matrix factorization is one of the most used recommendation systems, and various algorithms have been devised for it. A literature survey and summary of existing algorithms for predicting drug effects demonstrated that most such methods, including neighborhood regularized logistic matrix factorization, which was the best performer in benchmark tests, used a binary matrix that considers only the presence or absence of interactions. However, drug effects are known to have two opposite aspects, such as side effects and therapeutic effects. In the present study, we proposed using neighborhood regularized bidirectional matrix factorization (NRBdMF) to predict drug effects by incorporating bidirectionality, which is a characteristic property of drug effects. We used this proposed method for predicting side effects using a matrix that considered the bidirectionality of drug effects, in which known side effects were assigned a positive (+1) label and known treatment effects were assigned a negative (-1) label. The NRBdMF model, which utilizes drug bidirectional information, achieved enrichment of side effects at the top and indications at the bottom of the prediction list. This first attempt to consider the bidirectional nature of drug effects using NRBdMF showed that it reduced false positives and produced a highly interpretable output.


Assuntos
Algoritmos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos
3.
NAR Genom Bioinform ; 6(1): lqad111, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38187088

RESUMO

Immune responses in the liver are related to the development and progression of liver failure, and precise prediction of their behavior is important. Deconvolution is a methodology for estimating the immune cell proportions from the transcriptome, and it is mainly applied to blood-derived samples and tumor tissues. However, the influence of tissue-specific modeling on the estimation results has rarely been investigated. Here, we constructed a system to evaluate the performance of the deconvolution method on liver transcriptome data. We prepared seven mouse liver injury models using small-molecule compounds and established a benchmark dataset with corresponding liver bulk RNA-Seq and immune cell proportions. RNA-Seq expression for nine leukocyte subsets and four liver-associated cell types were obtained from the Gene Expression Omnibus to provide a reference. We found that the combination of reference cell sets affects the estimation results of reference-based deconvolution methods and established a liver-specific deconvolution by optimizing the reference cell set for each cell to be estimated. We applied this model to independent datasets and showed that liver-specific modeling is highly extrapolatable. We expect that this approach will enable sophisticated estimation from rich tissue data accumulated in public databases and to obtain information on aggregated immune cell trafficking.

4.
Toxicol Sci ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37941435

RESUMO

Toxicogenomics databases are useful for understanding biological responses in individuals because they include a diverse spectrum of biological responses. Although these databases contain no information regarding immune cells in the liver, which are important in the progression of liver injury, deconvolution that estimates cell-type proportions from bulk transcriptome could extend immune information. However, deconvolution has been mainly applied to humans and mice and less often to rats, which are the main target of toxicogenomics databases. Here, we developed a deconvolution method for rats to retrieve information regarding immune cells from toxicogenomics databases. The rat-specific deconvolution showed high correlations for several types of immune cells between spleen and blood, and between liver treated with toxicants compared with those based on human and mouse data. Additionally, we found 4 clusters of compounds in Open TG-GATEs database based on estimated immune cell trafficking, which are different from those based on transcriptome data itself. The contributions of this work are three-fold. First, we obtained the gene expression profiles of 6 rat immune cells necessary for deconvolution. Second, we clarified the importance of species differences on deconvolution. Third, we retrieved immune cell trafficking from toxicogenomics databases. Accumulated and comparable immune cell profiles of massive data of immune cell trafficking in rats could deepen our understanding of enable us to clarify the relationship between the order and the contribution rate of immune cells, chemokines and cytokines, and pathologies. Ultimately, these findings will lead to the evaluation of organ responses in Adverse Outcome Pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA