Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 12162-12167, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38590242

RESUMO

The local aromaticity of azulene has been studied to understand their electronic properties. For this purpose, we have used the magnetic criterion through magnetically induced current density maps, ring current strengths, NICSzz(1), and the bifurcation value of three-dimensional surfaces of NICSzz. On the other hand, the delocalization criterion was used by calculating the MCI and ELFπ. The results show that the five-membered ring (5-MR) is more aromatic than the seven-membered ring (7-MR) and more aromatic than the free C5H5- ring. The opposite case is seen for the seven-membered ring, which is less aromatic than the free C7H7+. The local aromatic rings in azulene are formed due to an intramolecular electron transfer from the 7-MR to the 5-MR. In addition, the proposed resonance structures that allow explaining the properties of azulene, such as the dipole moment or the relative stability (in comparison to other isomers), show a preference for the formation of 5-MRs; for this reason, it is possible to conclude that the aromaticity and relative stability of azulene is driven by the Glidewell-Lloyd rule.

2.
Phys Chem Chem Phys ; 26(21): 15386-15392, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747026

RESUMO

Singlet fission (SF) compounds offer a promising avenue for improving the performance of solar cells. Using TD-DFT methods, anti-Kasha azulene derivatives that could carry out SF have been designed. For this purpose, substituted azulenes with a donor (-OH) and/or an acceptor group (-CN) have been systematically studied using the S2 ≥ 2T1 formula. We have found that -CN (-OH) substituents on electrophilic (nucleophilic) carbons result in improved SF properties when compared to azulene.

3.
J Phys Chem A ; 128(25): 4950-4955, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38864772

RESUMO

In this article, we systematically study the stability and chemical bond nature of EH4Ng+ compounds (E = Al-Tl; Ng = He-Rn) at the CCSD(T) and ωB97XD levels of theory. Thermochemical calculations obtained by exploring different dissociation pathways show that these compounds could be stable at low temperatures. In addition, studied compounds have a strong E-Ng bond, which has been characterized using different methodologies such as quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) theory, and natural energy decomposition analysis (NEDA). Results indicate that the nature of the chemical bond is predominantly covalent, especially in the case those including the heavier gases (Ar-Rn), occurring through a charge transfer from the noble gas to the group 13 element. However, the electrostatic contribution is also important in the stabilization of this bond. This study extends the universe of group 13 molecules containing noble gas bonds beyond boron and other elements from the second period.

4.
J Chem Inf Model ; 61(8): 3955-3963, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34378935

RESUMO

Here, we introduce a hybrid method, named Kick-Fukui, to explore the potential energy surface (PES) of clusters and molecules using the Coulombic integral between the Fukui functions in the first screening of the best individuals. In the process, small stable molecules or clusters whose combination has the stoichiometry of the explored species are used as assembly units. First, a small set of candidates has been selected from a large and stochastically generated (Kick) population according to the maximum value of the Coulombic integral between the Fukui functions of both fragments. Subsequently, these few candidates are optimized using a gradient method and density functional theory (DFT) calculations. The performance of the program has been evaluated to explore the PES of various systems, including atomic and molecular clusters. In most cases studied, the global minimum (GM) has been identified with a low computational cost. The strategy does not allow to identify the GM of some silicon clusters; however, it predicts local minima very close in energy to the GM that could be used as the initial population of evolutionary algorithms.


Assuntos
Algoritmos , Humanos , Estrutura Molecular
5.
Phys Chem Chem Phys ; 23(24): 13574-13582, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34109330

RESUMO

The larger stability of phenacenes compared to their acene isomers in their ground states is attributed to the larger aromaticity of the former. To our knowledge the relative stability of acenes and phenacenes in their lowest-lying triplet states (T1) has not been discussed yet. Using unrestricted density functional theory calculations, our results show that for the smallest members of the series, acenes in their T1 states are more stable than the corresponding phenacenes. However, when the number of the rings (n) involved increases, the energy difference is reduced and for n > 12, phenacenes become more stable than acenes in their T1 states. To rationalize this trend, we analyze the aromaticity of acenes and phenacenes using a set of aromaticity descriptors. We find that in the T1 states of both acenes and phenacenes, the outer rings form aromatic Clar π-sextets. In acenes, delocalization of spin density in the central rings leads to the preferred formation of the largest antiaromatic diradical. Resonant structures in the form of antiaromatic diradical Baird π-octadectets and π-tetradectets are the major contributors, while the smaller ones, such as π-doublets and π-sextets, contribute the least. In phenacenes, structures with diradical antiaromatic Baird π-sextets in some of the central rings contribute the most. These results are relevant to understand the (anti)aromaticity of larger polycyclic aromatic hydrocarbons in their triplet states.

6.
Chemphyschem ; 21(2): 145-148, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31721418

RESUMO

Through delicate tuning of the electronic structure, we report herein a rational design of seventeen new putative global minimum energy structures containing a planar tetra- or pentacoordinate carbon atom embedded in an aromatic hydrocarbon. These structures are the result of replacing three consecutive hydrogen atoms of an aromatic hydrocarbon by less electronegative groups, forming a multicenter σ-bond with the planar hypercoordinate carbon atom and participating in the π-electron delocalization. This strategy that maximizes both mechanical and electronic effects through aromatic architectures can be extended to several molecular combinations to achieve new and diverse compounds containing planar hypercoordinate carbon centers.

7.
Phys Chem Chem Phys ; 22(4): 1826-1832, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31829390

RESUMO

The aromaticity and dynamics of a set of recently proposed neutral 5- and 6-membered heterocycles that are closed by dative (donor-acceptor) or multi-center σ bonds, and have resonance forms with a Hückel number of π-electrons, are examined. The donors and acceptors in the rings include N, O, and F, and B, Be, and Mg, respectively. The planar geometry of the rings, coupled with evidence from different measures of aromaticity, namely the NICSzz, and NICSπzz components of the conventional nucleus independent chemical shifts (NICS), and ring current strengths (RCS), indicate non-trivial degrees of aromaticity in certain cases, including the cyclic C3B2OH6 and C3BOH5 isomers, both with three bonds to the O site in the ring. The former is lower in energy by at least 17.6 kcal mol-1 relative to linear alternatives obtained from molecular dynamics simulations in this work. Some of the other systems examined are best described as non-aromatic. Ring opening, closing, and isomerization are observed in molecular dynamics simulations for some of the systems studied. In a few cases, the ring indeed persists.

8.
Inorg Chem ; 58(15): 10057-10064, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31287671

RESUMO

The synthesis and structural characterization of the dimer [(Sn6Ge2Bi)2]4- raise the possibility of obtaining a broad variety of analogous compounds with different Sn/Ge/Bi proportions. Several combinations of nine atoms have been detected by electrospray mass spectrometry as potential assembly units. However, [(Sn6Ge2Bi)2]4- remains as the unique experimentally characterized species in this series. This fact has motivated us to explore its potential energy surface, as well as its monomers' [Sn6Ge2Bi]3-/2-, in an effort to gain insight into the factors that might be privileging the experimental viability of this species. Our results show that the lowest-energy [Sn6Ge2Bi]3- structure remains in its oxidized product [Sn6Ge2Bi]2-, which corresponds to that identified in the dimer [(Sn6Ge2Bi)2]4-. Additionally, local minima, very close in energy to the lowest-energy monomer, are chiral mixtures that dimerize into diverse structures with a probable energetic cost, making them noncompetitive isomers. Finally, the global minimum of the dimer [(Sn6Ge2Bi)2]4- presents the most stable monomers as assembly units. These results show the importance of considering the simultaneity of all of these conditions for the viability of these types of compounds.

9.
Chem Commun (Camb) ; 60(4): 400-403, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38079184

RESUMO

Collective interactions are a novel type of bond between metals and AX3 fragments with an electropositive central atom, A, and electronegative X substituents. Here, using electrostatic potential maps and state-of-the-art bonding analysis tools we have shown that collective interactions are anti-electrostatic cation⋯π-Hole or cation⋯lp-Hole interactions.

10.
ACS Omega ; 8(25): 23168-23173, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396283

RESUMO

In this article, we studied the capability of bulky groups to contribute to the stabilization of a given compound in addition to the well-known steric effect related to substituents due to their composition (alkyl chains and aromatic groups, among others). For this purpose, the recently synthesized 1-bora-3-boratabenzene anion which contains large substituents was analyzed by means of the independent gradient model (IGM), natural population analysis (NPA) at the TPSS/def2-TZVP level, force field-based energy decomposition analysis (EDA-FF) applying the universal force field (UFF), and molecular dynamics calculations under the GFN2-xTB approach. The results indicate that the bulky groups should not only be considered for their steric effects but also for their ability to stabilize a system that could be very reactive.

11.
ACS Omega ; 8(3): 2880-2886, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713707

RESUMO

The electronic transmutation (ET) concept states that when an element with atomic number Z gains an electron, it transmutes into a Z + 1 element, leading to species that possess similar chemical bonding patterns and geometric structures regarding the original (Z + 1) element. In this work, the opposite concept, that is, the inverse ET, is assessed. For this purpose, several main group compounds have been analyzed in terms of the adaptive natural density partitioning. The obtained results suggest that when an atom Z loses an electron, it transmutes into a Z - 1 atom, acquiring its geometrical structure and bonding pattern.

12.
RSC Adv ; 13(35): 24499-24504, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588980

RESUMO

A new algorithm called Automatic Johnson Cluster Generator (AJCG) is presented, which, as its name indicates, allows the definition of the desired Johnson polyhedron to subsequently carry out all the possible permutations between the atoms that form this polyhedron. This new algorithm allows the exhaustive study of the structures' potential energy surface (PES). In addition, the AJCG algorithm is helpful for the study of three-dimensional compounds such as boranes or Zintl clusters and their structural derivatives with two or more different atoms. The automatic filling of vertices is particularly useful in mixed compounds because of the possibility of taking into account all possible configurations in the structure. As a test system, we investigated the arachno-type E6M24- (E = Si, Ge, Sn; M = Sb, Bi) structure which has eight vertices and complies with Wade-Mingos rules. Initially, we defined a bipyramidal structure (10 vertices), and filled the vertices with the atoms in all possible configurations. Since the selected system has eight atoms, the two remaining vertices were filled with pseudo atoms to complete the structure. After re-optimizing the initial population generated with AJCG, a large number of isomers with energy below 10 kcal mol-1 are identified. These results show that the most stable isomers possess homonuclear M-M bonds, except Sn6Bi24-. Although the overall putative minima differ at the PBE0-D3 and DLPNO-CCSD(T) levels, they are always competitive minima. In addition to using high-precision methodologies to correctly study relative energies, applying solvent effects in highly charged systems becomes mandatory. The aromatic character of these studied systems was demonstrated qualitatively with two- and three-dimensional mapping and quantitatively by calculating the value of the z-component of the induced magnetic field at the cage center, including scalar and spin-orbit correction for relativistic effects. The compounds studied have a high degree of aromaticity, which allows us to establish that despite structural modifications (i.e., from closo to arachno), the aromaticity is preserved.

13.
ACS Omega ; 7(25): 21939-21945, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785290

RESUMO

Aromaticity is a useful tool to rationalize the structure, stability, and reactivity in several compounds. Although aromaticity is not directly an observable, it is well accepted that electronic delocalization around the molecular ring is a key stabilizing feature of aromatic compounds. This contribution presents a systematic evaluation of the capability of delocalization and reactivity criteria to describe aromaticity in a set of fluorinated benzenes. The aromaticity indices are compared with quantities obtained from the magnetic criteria of aromaticity, i.e., the strength of the ring current induced by an external magnetic field and the popular NICS zz (1) index. In this evaluation, the indices based on delocalization criteria used are aromatic fluctuation index (FLU), para-delocalization index (PDI), PDIπ, and the multicenter delocalization index (MCI). In addition, indices based on the bifurcation values of scalar functions are derived from electron density such as electron localization function (the π contribution, ELFπ) and the π contribution of the localized orbital locator (LOLπ). Furthermore, reactivity indices based on chemical reactivity and the information-theoretic (reactivity) approach are para-linear response (PLR), Shannon entropy, Fisher information, and Ghosh-Berkowitz-Parr (GBP) entropy. The results obtained show that the delocalization-based indicators present a high sensitivity to slight changes in aromaticity and that the reactivity criterion can be considered as a complementary tool for the study of this phenomenon, even when these changes are minimal. These results encourage the use of multiple indicators for a complete understanding of aromaticity in various chemical compounds.

14.
RSC Adv ; 12(13): 7906-7910, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424723

RESUMO

The aromaticity of borazine (B3N3H6), also known as the inorganic benzene, is a controversial issue since this compound has several characteristics that could qualify it as an aromatic compound. However, recent studies using magnetic criteria indicate that this compound should be considered as a non-aromatic system. This assignment is mainly due to diatropic currents in the nitrogen atoms without observation of ring currents. The present work shows by means of the magnetic criteria that borazine has a ring current hidden by the local contributions of degenerate orbitals π1 and π2. Additionally, the study of borazine's first triplet state antiaromaticity using the magnetic and energetic criteria by means of isomerization stabilization energies (ISEs) together with Baird's and Hückel's rules suggests that borazine is best described as an (weakly) aromatic system.

15.
J Chem Theory Comput ; 15(2): 1463-1475, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543750

RESUMO

A novel program for the search of global minimum structures of atomic clusters and molecules in the gas phase, AUTOMATON, is introduced in this work. This program involves the following: first, the generation of an initial population, using a simplified probabilistic cellular automaton method, which allows easy control of the adequate distribution of atoms in space; second, the fittest individuals are selected to evolve, through genetic operations (mating and mutations), until the best candidate for a global minimum surfaces. In addition, we propose a simple way to build the descendant structures by establishing a ranking of genes to be inherited. Thus, by means of a chemical formula checker procedure, genes are transferred to the offspring, ensuring that they always have the appropriate type and number of atoms. It is worth noting that a fraction of the fittest group is subject to mutation operations. This program also includes algorithms to identify duplicate structures: one based on geometric similarity and another on the similar distribution of atomic charges. The effectiveness of the program was evaluated in a group of 45 molecules, considering organic and organometallic compounds (benzene, cyclopentadienyl anion, and ferrocene), Zintl ion clusters [Sn9- m- nGe mBi n](4- n)- ( n = 1-4 and m = 0-(9- n)), star-shaped clusters (Li7E5+, E = BH, C, Si, Ge) and a variety of boron-based clusters. The global minimum and the lowest-energy isomers reported in the literature were found for all the cases considered in this article. These results successfully prove AUTOMATON's effectiveness on the identification of energetically preferred structures of a wide variety of chemical species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA