Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894302

RESUMO

In this article, the authors focus on the introduction of a hybrid method for risk-based fault detection (FD) using dynamic principal component analysis (DPCA) and failure method and effect analysis (FMEA) based Bayesian networks (BNs). The FD problem has garnered great interest in industrial application, yet methods for integrating process risk into the detection procedure are still scarce. It is, however, critical to assess the risk each possible process fault holds to differentiate between non-safety-critical and safety-critical abnormalities and thus minimize alarm rates. The proposed method utilizes a BN established through FMEA analysis of the supervised process and the results of dynamical principal component analysis to estimate a modified risk priority number (RPN) of different process states. The RPN is used parallel to the FD procedure, incorporating the results of both to differentiate between process abnormalities and highlight critical issues. The method is showcased using an industrial benchmark problem as well as the model of a reactor utilized in the emerging liquid organic hydrogen carrier (LOHC) technology.

2.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065951

RESUMO

The targeted shortening of sensor development requires short and convincing verification tests. The goal of the development of novel verification methods is to avoid or reduce an excessive amount of testing and identify tests that guarantee that the assumed failure will not happen in practice. In this paper, a method is presented that results in the test loads of such a verification. The method starts with the identification of the requirements for the product related to robustness using the precise descriptions of those use case scenarios in which the product is assumed to be working. Based on the logic of the Quality Function Deployment (QFD) method, a step-by-step procedure has been developed to translate the robustness requirements through the change in design parameters, their causing phenomena, the physical quantities as causes of these phenomena, until the test loads of the verification. The developed method is applied to the test plan of an automotive sensor. The method is general and can be used for any parts of a vehicle, including mechanical, electrical and mechatronical ones, such as sensors and actuators. Nonetheless, the method is applicable in a much broader application area, even outside of the automotive industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA