Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325259

RESUMO

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Assuntos
Ilhotas Pancreáticas , Urocortinas , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Somatostatina/metabolismo , Urocortinas/metabolismo
2.
Metabolites ; 13(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755254

RESUMO

The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE in vivo. Sprague Dawley rats (71.3 ± 0.46 g) were fed a high-fat Western-style diet (WD) or WD containing either 1 g/kg feed or 4 g/kg feed RE for six weeks. A group fed standard chow served as a negative control. The treatments did not affect body weight; however, the liver fat percentage was reduced in rats fed RE, and NMR analyses of liver tissue indicated that total cholesterol and triglycerides in the liver were reduced. In plasma, HDL cholesterol was increased while triglycerides were decreased. Rats fed high RE had significantly increased fasting plasma concentrations of Glucagon-like peptide-1 (GLP-1). Proteomics analyses of liver tissue showed that RE increased enzymes involved in fatty acid oxidation, possibly associated with the higher fasting GLP-1 levels, which may explain the improvement of the overall lipid profile and hepatic fat accumulation. Furthermore, high levels of succinic acid in the cecal content of RE-treated animals suggested a modulation of the microbiota composition. In conclusion, our results suggest that RE may alleviate the effects of consuming a high-fat diet through increased GLP-1 secretion and changes in microbiota composition.

3.
J Clin Endocrinol Metab ; 106(12): e5109-e5123, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34265066

RESUMO

CONTEXT: Glucose homeostasis is under circadian control through both endocrine and intracellular mechanisms, with several lines of evidence suggesting that melatonin affects glucose homeostasis. OBJECTIVE: To evaluate the acute in vivo and in situ effects of melatonin on secretion of the incretin hormones, glucagon-like-peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), and their impact on ß-cell insulin secretion. DESIGN: A human randomized, double-blinded, placebo-controlled crossover study combined with a confirmatory in situ study of perfused rat intestines. SETTING: Aarhus University Hospital. METHODS: Fifteen healthy male participants were examined 2 × 2 times: an oral glucose tolerance test (OGTT) was performed on day 1 and an isoglycemic IV glucose infusion replicating the blood glucose profile of the OGTT day was performed on day 2. These pairs of study days were repeated on treatment with melatonin and placebo, respectively. For the in situ study, 6 rat intestines and 4 rat pancreases were perfused arterially with perfusion buffer ±â€…melatonin. The intestines were concomitantly perfused with glucose through the luminal compartment. RESULTS: In humans, melatonin treatment resulted in reduced GIP secretion compared with placebo (ANOVA P = 0.003), an effect also observed in the perfused rat intestines (ANOVA P = 0.003), in which GLP-1 secretion also was impaired by arterial melatonin infusion (ANOVA P < 0.001). Despite a decrease in GIP levels, the in vivo glucose-stimulated insulin secretion was unaffected by melatonin (P = 0.78). CONCLUSION: Melatonin reduced GIP secretion during an oral glucose challenge in healthy young men but did not affect insulin secretion. Reduced GIP secretion was confirmed in an in situ model of the rat intestine.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Incretinas/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Intestinos/metabolismo , Melatonina/farmacologia , Adulto , Animais , Antioxidantes/farmacologia , Glicemia/análise , Estudos Cross-Over , Método Duplo-Cego , Seguimentos , Teste de Tolerância a Glucose , Voluntários Saudáveis , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Adulto Jovem
4.
Front Endocrinol (Lausanne) ; 12: 690387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421821

RESUMO

The molecular sensors underlying nutrient-stimulated GLP-1 secretion are currently being investigated. Peripheral administration of melanocortin-4 receptor (MC4R) agonists have been reported to increase GLP-1 plasma concentrations in mice and humans but it is unknown whether this effect results from a direct effect on the GLP-1 secreting L-cells in the intestine, from other effects in the intestine or from extra-intestinal effects. We investigated L-cell expression of MC4R in mouse and human L-cells by reanalyzing publicly available RNA sequencing databases (mouse and human) and by RT-qPCR (mouse), and assessed whether administration of MC4R agonists to a physiologically relevant gut model, isolated perfused mouse and rat small intestine, would stimulate GLP-1 secretion or potentiate glucose-stimulated secretion. L-cell MC4R expression was low in mouse duodenum and hardly detectable in the ileum and MC4R expression was hardly detectable in human L-cells. In isolated perfused mouse and rat intestine, neither intra-luminal nor intra-arterial administration of NDP-alpha-MSH, a potent MC4R agonist, had any effect on GLP-1 secretion (P ≥0.98, n = 5-6) from the upper or lower-half of the small intestine in mice or in the lower half in rats. Furthermore, HS014-an often used MC4R antagonist, which we found to be a partial agonist-did not affect the glucose-induced GLP-1 response in the rat, P = 0.62, n = 6). Studies on transfected COS7-cells confirmed bioactivity of the used compounds and that concentrations employed were well within in the effective range. Our combined data therefore suggest that MC4R-activated GLP-1 secretion in rodents either exclusively occurs in the colon or involves extra-intestinal signaling.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestino Delgado/metabolismo , Células L/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Bases de Dados Factuais , Humanos , Intestino Delgado/efeitos dos fármacos , Células L/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Wistar , Receptor Tipo 4 de Melanocortina/agonistas , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA