Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 197(1): 168-78, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27217584

RESUMO

Tumors with the help of the surrounding environment facilitate the immune suppression in patients, and immunotherapy can counteract this inhibition. Among immunotherapeutic strategies, the immunostimulatory cytokine IL-15 could represent a serious candidate for the reactivation of antitumor immunity. However, exogenous IL-15 may have a limited impact on patients with cancer due to its dependency on IL-15Rα frequently downregulated in cancer patients. In this work, we studied the antitumor activity of the IL-15 superagonist receptor-linker-IL-15 (RLI), designed to bypass the need of endogenous IL-15Rα. RLI consists of human IL-15 covalently linked to the human IL-15Rα sushi(+) domain. In a mouse model of colorectal carcinoma, RLI as a stand-alone treatment could limit tumor outgrowth only when initiated at an early time of tumor development. At a later time, RLI was not effective, coinciding with the strong accumulation of terminally exhausted programmed cell death-1 (PD-1)(high) T cell Ig mucin-3(+) CD8(+) T cells, suggesting that RLI was not able to reactivate terminally exhausted CD8(+) T cells. Combination with PD-1 blocking Ab showed synergistic activity with RLI, but not with IL-15. RLI could induce a greater accumulation of memory CD8(+) T cells and a stronger effector function in comparison with IL-15. Ex vivo stimulation of tumor-infiltrated lymphocytes from 16 patients with renal cell carcinoma demonstrated 56% of a strong tumor-infiltrated lymphocyte reactivation with the combination anti-PD-1/RLI compared with 43 and 6% with RLI or anti-PD-1, respectively. Altogether, this work provides evidence that the sushi-IL-15Rα/IL-15 fusion protein RLI enhances antitumor activity of anti-PD-1 treatment and is a promising approach to stimulate host immunity.


Assuntos
Adenocarcinoma/terapia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma de Células Renais/terapia , Neoplasias do Colo/terapia , Imunoterapia/métodos , Interleucina-15/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Adenocarcinoma/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Renais/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Memória Imunológica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos
2.
Front Immunol ; 13: 989895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300122

RESUMO

SOT101 is a superagonist fusion protein of interleukin (IL)-15 and the IL-15 receptor α (IL-15Rα) sushi+ domain, representing a promising clinical candidate for the treatment of cancer. SOT101 among other immune cells specifically stimulates natural killer (NK) cells and memory CD8+ T cells with no significant expansion or activation of the regulatory T cell compartment. In this study, we showed that SOT101 induced expression of cytotoxic receptors NKp30, DNAM-1 and NKG2D on human NK cells. SOT101 stimulated dose-dependent proliferation and the relative expansion of both major subsets of human NK cells, CD56brightCD16- and CD56dimCD16+, and these displayed an enhanced cytotoxicity in vitro. Using human PBMCs and isolated NK cells, we showed that SOT101 added concomitantly or used for immune cell pre-stimulation potentiated clinically approved monoclonal antibodies Cetuximab, Daratumumab and Obinutuzumab in killing of tumor cells in vitro. The anti-tumor efficacy of SOT101 in combination with Daratumumab was assessed in a solid multiple myeloma xenograft in CB17 SCID mouse model testing several combination schedules of administration in the early and late therapeutic setting of established tumors in vivo. SOT101 and Daratumumab monotherapies decreased with various efficacy tumor growth in vivo in dependence on the advancement of the tumor development. The combination of both drugs showed the strongest anti-tumor efficacy. Specifically, the sequencing of both drugs did not matter in the early therapeutic setting where a complete tumor regression was observed in all animals. In the late therapeutic treatment of established tumors Daratumumab followed by SOT101 administration or a concomitant administration of both drugs showed a significant anti-tumor efficacy over the respective monotherapies. These results suggest that SOT101 might significantly augment the anti-tumor activity of therapeutic antibodies by increasing NK cell-mediated activity in patients. These results support the evaluation of SOT101 in combination with Daratumumab in clinical studies and present a rationale for an optimal clinical dosing schedule selection.


Assuntos
Mieloma Múltiplo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Camundongos , Animais , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Cetuximab/metabolismo , Linfócitos T CD8-Positivos/patologia , Camundongos SCID , Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Mieloma Múltiplo/patologia
3.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32532840

RESUMO

BACKGROUND: As the immune system is compromised in patients with cancer, therapeutic strategies to stimulate immunity appear promising, to avoid relapse and increase long-term overall survival. Interleukin-15 (IL-15) has similar properties to IL-2, but does not cause activation-induced cell death nor activation and proliferation of regulatory T cells (Treg), which makes it a serious candidate for anticancer immunotherapy. However, IL-15 has a short half-life and high doses are needed to achieve responses. Designed to enhance its activity, receptor-linker-IL-15 (RLI) (SO-C101) is a fusion molecule of human IL-15 covalently linked to the human IL-15Rα sushi+ domain currently assessed in a phase I/Ib clinical trial on patients with advanced/metastatic solid cancer. METHODS: We investigated the antimetastatic activity of RLI in a 4T1 mouse mammary carcinoma that spontaneously metastasizes and evaluated its immunomodulatory role in the metastatic lung microenvironment. We further characterized the proliferation, maturation and cytotoxic functions of natural killer (NK) cells in tumor-free mice treated with RLI. Finally, we explored the effect of RLI on human NK cells from healthy donors and patients with non-small cell lung cancer (NSCLC). RESULTS: RLI treatment displayed antimetastatic properties in the 4T1 mouse model. By characterizing the lung microenvironment, we observed that RLI restored the balance between NK cells and neutrophils (CD11b+ Ly6Ghigh Ly6Clow) that massively infiltrate lungs of 4T1-tumor bearing mice. In addition, the ratio between NK cells and Treg was strongly increased by RLI treatment. Further pharmacodynamic studies in tumor-free mice revealed superior proliferative and cytotoxic functions on NK cells after RLI treatment compared with IL-15 alone. Characterization of the maturation stage of NK cells demonstrated that RLI favored accumulation of CD11b+ CD27high KLRG1+ mature NK cells. Finally, RLI demonstrated potent immunostimulatory properties on human NK cells by inducing proliferation and activation of NK cells from healthy donors and enhancing cytotoxic responses to NKp30 crosslinking in NK cells from patients with NSCLC. CONCLUSIONS: Collectively, our work demonstrates superior activity of RLI compared with rhIL-15 in modulating and activating NK cells and provides additional evidences for a therapeutic strategy using RLI as antimetastatic molecule.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-15/administração & dosagem , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral/transplante , Feminino , Voluntários Saudáveis , Humanos , Interleucina-15/agonistas , Células Matadoras Naturais/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Cultura Primária de Células , Proteínas Recombinantes/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
4.
Cancer Res ; 63(18): 6084-9, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14522939

RESUMO

Endocan is a proteoglycan specifically secreted by endothelial cells. Through its glycan domains, endocan binds to hepatocyte growth factor and increases its mitogenic activity. Here, we show that human embryonic kidney 293 cells, which have been genetically engineered to overexpress endocan, form tumors when injected s.c. in SCID mice. Both the glycan and a phenylalanine-rich region of endocan are necessary for mediating tumor growth activity. Blocking the phenylalanine-rich region with a monoclonal antibody results in a marked reduction of tumor growth. Finally, we report that circulating levels of endocan are increased in mice with the endocan-expressing human embryonic kidney 293 cell tumors and in a series of adult patients with lung cancer. Taken together, these results suggest that (a) endothelial-derived endocan induces tumor growth, (b) antibodies to endocan may have therapeutic potential, and (c) circulating levels of endocan may eventually represent a novel marker for cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Neoplasias , Proteoglicanas/fisiologia , Animais , Linhagem Celular Tumoral , DNA Complementar/genética , Células HT29 , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos SCID , Fenilalanina/metabolismo , Fenilalanina/fisiologia , Proteoglicanas/biossíntese , Proteoglicanas/genética , Proteoglicanas/metabolismo , Transfecção
5.
MAbs ; 6(4): 1026-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072059

RESUMO

Rituximab (RTX), a chimeric IgG1 monoclonal antibody directed against the CD20 antigen, has revolutionized the treatment of B-cell malignancies. Nevertheless, the relapsed/refractory rates are still high. One strategy to increase the clinical effectiveness of RTX is based on antibody-cytokine fusion protein (immunocytokine; ICK) vectorizing together at the tumor site the antibody effector activities and the cytokine co-signal required for the generation of cytotoxic cellular immunity. Such ICKs linking various antibody formats to interleukin (IL)-2 are currently being investigated in clinical trials and have shown promising results in cancer therapies. IL-15, a structurally-related cytokine, is now considered as having a better potential than IL-2 in antitumor immunotherapeutic strategies. We have previously engineered the fusion protein RLI, linking a soluble form of human IL-15Rα-sushi+ domain to human IL-15. Compared with IL-15, RLI displayed better biological activities in vitro and higher antitumor effects in vivo in murine and human cancer models. In this study, we investigated the advantages of fusing RLI to RTX. Anti-CD20-RLI kept its binding capacity to CD20, CD16 and IL-15 receptor and therefore fully retained both antibody effector functions (ADCC and CDC), and the cytokine potential of RLI. In a severe combined immunodeficiency (SCID) mouse model of disseminated residual lymphoma, anti-CD20-RLI was found to induce long-term survival of 90% of mice up to at least 120 days whereas RLI and RTX, alone or in combination, just delayed the disease onset (100% of death at 28, 40 and 51 days respectively). These findings suggest that such ICK could improve the clinical efficacy of RTX, particularly in patients with refractory B-cell lymphoma.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Linfoma de Células B/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/imunologia , Antineoplásicos/imunologia , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/farmacologia , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Masculino , Camundongos , Camundongos SCID , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA