Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 371, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042883

RESUMO

Late-stage functionalization of natural products offers an elegant route to create novel entities in a relevant biological target space. In this context, enzymes capable of halogenating sp3 carbons with high stereo- and regiocontrol under benign conditions have attracted particular attention. Enabled by a combination of smart library design and machine learning, we engineer the iron/α-ketoglutarate dependent halogenase WelO5* for the late-stage functionalization of the complex and chemically difficult to derivatize macrolides soraphen A and C, potent anti-fungal agents. While the wild type enzyme WelO5* does not accept the macrolide substrates, our engineering strategy leads to active halogenase variants and improves upon their apparent kcat and total turnover number by more than 90-fold and 300-fold, respectively. Notably, our machine-learning guided engineering approach is capable of predicting more active variants and allows us to switch the regio-selectivity of the halogenases facilitating the targeted analysis of the derivatized macrolides' structure-function activity in biological assays.


Assuntos
Algoritmos , Macrolídeos/metabolismo , Oxirredutases/metabolismo , Engenharia de Proteínas , Biocatálise , Biotransformação , Fungos/fisiologia , Halogenação , Macrolídeos/química , Modelos Moleculares , Oxirredutases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA