Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Phycol ; 56(5): 1216-1231, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32422688

RESUMO

The polyphasic approach has been widely applied in cyanobacterial taxonomy, which frequently led to additions to the species inventory. Increasing our knowledge about species and the habitats they were isolated from enables new insights into the ecology of newly established genera and species allowing speculations about the ecological niche of taxa. Here, we are describing three new species belonging to three genera that broadens the ecological amplitude and the geographical range of each of the three genera. Cyanocohniella crotaloides sp. nov. is described from sandy beach mats of the temperate island Schiermonnikoog, Netherlands, Oculatella crustae-formantes sp. nov. was isolated from biological soil crusts of the Arctic Spitsbergen, Norway, and Aliterella chasmolithica originated from granitic stones of the arid Atacama Desert, Chile. All three species could be separated from related species using molecular sequencing of the 16S rRNA gene and 16S-23S ITS gene region, the resulting secondary structures as well as p-distance analyses of the 16S-23S ITS and various microscopic techniques. The novel taxa described in this study contribute to a better understanding of the diversity of the genera Cyanocohniella, Oculatella, and Aliterella in different habitats.


Assuntos
DNA Bacteriano , RNA Ribossômico 16S , Regiões Árticas , Chile , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Svalbard
2.
Mol Phylogenet Evol ; 133: 236-255, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576758

RESUMO

Seven new species and two varieties of Klebsormidium were described using an integrative approach on the base of 28 strains from the poorly studied phylogenetic superclade G. These strains originated from the unusual and exotic habitats (semi-deserts, semi-arid shrublands, Mediterranean shrub and deciduous vegetation, temperate Araucaria forests, peat bogs, dumps after coal mining, maritime sand dunes etc.) of four continents (Africa, South and North America, and Europe). Molecular phylogenies based on ITS-1,2, rbcL gene and concatenated dataset of ITS-1,2-rbcL, secondary structure of ITS-2, morphology, ecology and biogeography, micrographs and drawings of the investigated strains were assessed. Additionally, phylogeny and morphology of 18 Klebsormidium strains from other lineages isolated from the same localities (different vegetation types of Chile and maritime sand dunes of Germany) were investigated for the comparison with representatives of clade G. Clade G Klebsormidium is characterized by distant phylogenetic position from the other Klebsormidium lineages and prominent morphology: four-lobed chloroplasts and mostly short swollen cells in young culture, compact small pyrenoids, curved or disintegrated filaments, unusual elongation of cells in old culture, formation of specific cluster- and knot-like colonies on agar surface, especially prominent in strains isolated from desert regions, from which the group probably originated. Comparison of Klebsormidium diversity from different biogeographic regions showed that the representatives of clade G are common algae in regions of the southern hemisphere (South Africa and Chile) and rare representatives in terrestrial ecosystems of the northern hemisphere. Further investigation of mostly unstudied territories of the southern hemisphere could bring many surprises and discoveries, leading to a change of the present concept that Klebsormidium is cosmopolitan in distribution.


Assuntos
Biodiversidade , Filogenia , Solo , Estreptófitas/classificação , Cloroplastos , DNA Intergênico/genética , Florestas , Geografia , Conformação de Ácido Nucleico
3.
J Phycol ; 55(6): 1306-1318, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378942

RESUMO

In the Atacama Desert, cyanobacteria grow on various substrates such as soils (edaphic) and quartz or granitoid stones (lithic). Both edaphic and lithic cyanobacterial communities have been described but no comparison between both communities of the same locality has yet been undertaken. In the present study, we compared both cyanobacterial communities along a precipitation gradient ranging from the arid National Park Pan de Azúcar (PA), which resembles a large fog oasis in the Atacama Desert extending to the semiarid Santa Gracia Natural Reserve (SG) further south, as well as along a precipitation gradient within PA. Various microscopic techniques, as well as culturing and partial 16S rRNA sequencing, were applied to identify 21 cyanobacterial species; the diversity was found to decline as precipitation levels decreased. Additionally, under increasing xeric stress, lithic community species composition showed higher divergence from the surrounding edaphic community, resulting in indigenous hypolithic and chasmoendolithic cyanobacterial communities. We conclude that rain and fog water, respectively, cause contrasting trends regarding cyanobacterial species richness in the edaphic and lithic microhabitats.


Assuntos
Cianobactérias , Clima Desértico , Lítio , RNA Ribossômico 16S , Microbiologia do Solo , Água
4.
Glob Chang Biol ; 24(3): 1123-1135, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29143417

RESUMO

The Antarctic Peninsula, a tundra biome dominated by lichens and bryophytes, is an ecozone undergoing rapid temperature shifts. Such changes may demand a high physiological plasticity of the local lichen species to maintain their role as key drivers in this pristine habitat. This study examines the response of net photosynthesis and respiration to increasing temperatures for three Antarctic lichen species with different ecological response amplitudes. We hypothesize that negative effects caused by increased temperatures can be mitigated by thermal acclimation of respiration and/or photosynthesis. The fully controlled growth chamber experiment simulated intermediate and extreme temperature increases over the time course of 6 weeks. Results showed that, in contrast to our hypothesis, none of the species was able to down-regulate temperature-driven respiratory losses through thermal acclimation of respiration. Instead, severe effects on photobiont vitality demonstrated that temperatures around 15°C mark the upper limit for the two species restricted to the Antarctic, and when mycobiont demands exceeded the photobiont capacity they could not survive within the lichen thallus. In contrast, the widespread lichen species was able to recover its homoeostasis by rapidly increasing net photosynthesis. We conclude that to understand the complete lichen response, acclimation processes of both symbionts, the photo- and the mycobiont, have to be evaluated separately. As a result, we postulate that any acclimation processes in lichen are species-specific. This, together with the high degree of response variability and sensitivity to temperature in different species that co-occur spatially close, complicates any predictions regarding future community composition in the Antarctic. Nevertheless, our results suggest that species with a broad ecological amplitude may be favoured with on-going changes in temperature.


Assuntos
Aclimatação/fisiologia , Líquens/fisiologia , Regiões Antárticas , Mudança Climática , Ecossistema , Fotossíntese/fisiologia , Temperatura
5.
BMC Evol Biol ; 17(1): 93, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359299

RESUMO

BACKGROUND: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. RESULTS: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. CONCLUSIONS: Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Líquens/genética , Líquens/fisiologia , Adaptação Fisiológica , Ascomicetos/classificação , Ecossistema , Genoma Fúngico , Genômica , Líquens/classificação , Região do Mediterrâneo , Simbiose
6.
Microb Ecol ; 67(2): 286-301, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141940

RESUMO

Biological soil crusts (BSCs) are communities of cryptogamic organisms, occurring in arid and semiarid regions all over the world. Based on both morphological identification and genetic analyses, we established a first cyanobacterial inventory using the biphasic approach for BSCs within two major biomes of southern Africa. The samples were collected at two different sites in the Succulent Karoo and one in the Nama Karoo. After cultivation and morphological identification, the 16S rRNA gene was sequenced from the cyanobacterial cultures. From the soil samples, the DNA was extracted, and the 16S rRNA gene sequenced. All the sequences of the clone libraries from soil and cultures were compared with those of the public databases. Forty-five different species were morphologically identified in the samples of the Succulent Karoo (observatories of Soebatsfontein and Goedehoop). Based on the genetic analyses, 60 operational taxonomic units (OTUs) were identified for the Succulent Karoo and 43 for the Nama Karoo (based on 95% sequence similarity). The cloned sequences corresponded well with the morphologically described taxa in cultures and sequences in the public databases. Besides known species of typical crust-forming cyanobacterial genera (Microcoleus, Phormidium, Tolypothrix and Scytonema), we found sequences of so far undescribed species of the genera Leptolyngbya, Pseudanabaena, Phormidium, Oscillatoria, Schizothrix and Microcoleus. Most OTUs were restricted to distinct sites. Grazed soils showed lower taxa numbers than undisturbed soils, implying the presence of early successional crust types and reduced soil surface protection. Our combined approach of morphological identification and genetic analyses allowed both a taxa inventory and the analysis of species occurring under specific habitat conditions.


Assuntos
Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Genótipo , Fenótipo , Microbiologia do Solo , África Austral , Biodiversidade , Clonagem Molecular , Cianobactérias/genética , DNA Bacteriano/genética , Ecossistema , RNA Ribossômico 16S/genética
7.
Mycologia ; 116(1): 44-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37955984

RESUMO

Over the decades our understanding of lichens has shifted to the fact that they are multiorganismic, symbiotic microecosystems, with their complex interactions coming to the fore due to recent advances in microbiomics. Here, we present a mutualistic-parasitic continuum dynamics scenario between an orange lichen and a lichenicolous fungus from the Atacama Desert leading to the decay of the lichen's photobiont and leaving behind a black lichen thallus. Based on isolation, sequencing, and ecophysiological approaches including metabolic screenings of the symbionts, we depict consequences upon infection with the lichenicolous fungus. This spans from a loss of the lichen's photosynthetic activity and an increased roughness of its surface to an inhibition of the parietin synthesis as a shared pathway between the photobiont and the mycobiont, including a shift of secondary metabolism products. This degree of relations has rarely been documented before, although lichenicolous fungi have been studied for over 200 years, adding an additional level to the view of interactions within lichens.


Assuntos
Clorófitas , Líquens , Líquens/microbiologia , Filogenia , Fungos , Simbiose
8.
Environ Microbiome ; 19(1): 59, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123247

RESUMO

Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.

9.
ISME Commun ; 4(1): ycae069, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38966402

RESUMO

Lichens are remarkable and classic examples of symbiotic organisms that have fascinated scientists for centuries. Yet, it has only been for a couple of decades that significant advances have focused on the diversity of their green algal and/or cyanobacterial photobionts. Cyanolichens, which contain cyanobacteria as their photosynthetic partner, include up to 10% of all known lichens and, as such, studies on their cyanobionts are much rarer compared to their green algal counterparts. For the unicellular cyanobionts, i.e. cyanobacteria that do not form filaments, these studies are even scarcer. Nonetheless, these currently include at least 10 different genera in the cosmopolitan lichen order Lichinales. An international consortium (International Network of CyanoBionts; INCb) will tackle this lack of knowledge. In this article, we discuss the status of current unicellular cyanobiont research, compare the taxonomic resolution of photobionts from cyanolichens with those of green algal lichens (chlorolichens), and give a roadmap of research on how to recondition the underestimated fraction of symbiotic unicellular cyanobacteria in lichens.

10.
Front Microbiol ; 14: 1136322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152745

RESUMO

Under continuous human disturbance, regeneration is the basis for biodiversity persistence and ecosystem service provision. In tropical dry forests, edaphic ecosystem engineering by biological soil crusts (biocrusts) could impact regeneration by influencing erosion control and soil water and nutrient fluxes, which impact landscape hydrology, geomorphology, and ecosystem functioning. This study investigated the effect of cyanobacteria-dominated biocrusts on water infiltration and aggregate stability in a human-modified landscape of the Caatinga dry forest (NE Brazil), a system characterized by high levels of forest degradation and increasing aridity. By trapping dust and swelling of cyanobacterial filaments, biocrusts can seal soil surfaces and slow down infiltration, which potentially induces erosion. To quantify hydraulic properties and erosion control, we used minidisc-infiltrometry, raindrop-simulation, and wet sieving at two sites with contrasting disturbance levels: an active cashew plantation and an abandoned field experiencing forest regeneration, both characterized by sandy soils. Under disturbance, biocrusts had a stronger negative impact on infiltration (reduction by 42% vs. 37% during regeneration), although biocrusts under regenerating conditions had the lowest absolute sorptivity (0.042 ± 0.02 cm s-1/2) and unsaturated hydraulic conductivity (0.0015 ± 0.0008 cm s-1), with a doubled water repellency. Biocrusts provided high soil aggregate stability although stability increased considerably with progression of biocrust succession (raindrop simulation disturbed: 0.19 ± 0.22 J vs. regenerating: 0.54 ± 0.22 J). The formation of stable aggregates by early successional biocrusts on sandy soils suggests protection of dry forest soils even on the worst land use/soil degradation scenario with a high soil erosion risk. Our results confirm that biocrusts covering bare interspaces between vascular plants in human-modified landscapes play an important role in surface water availability and erosion control. Biocrusts have the potential to reduce land degradation, but their associated ecosystem services like erosion protection, can be impaired by disturbance. Considering an average biocrust coverage of 8.1% of the Caatinga landscapes, further research should aim to quantify the contribution of biocrusts to forest recovery to fully understand the role they play in the functioning of this poorly explored ecosystem.

11.
ISME Commun ; 3(1): 113, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857858

RESUMO

Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.

12.
New Phytol ; 194(1): 245-253, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22257018

RESUMO

• Additional water supplied by dew formation is an important resource for microbes, plants and animals in precipitation-limited habitats, but has received little attention in tropical forests until now. • We evaluated the micro-environmental conditions of tree stem surfaces and their epiphytic organisms in a neotropical forest, and present evidence for a novel mechanism of diurnal dew formation on these surfaces until midday that has physiological implications for corticolous epiphytes such as lichens. • In the understorey of a lowland forest in French Guiana, heat storage of stems during the day and delayed radiative loss during the night decreased stem surface temperatures by 6°C in comparison to the dew-point temperature of ambient air. This measured phenomenon induced modelled totals of diurnal dew formation between 0.29 and 0.69 mm d⁻¹ on the surface of the bark and the lichens until early afternoon. • Crustose lichens substantially benefit from this dew formation, because it prolongs photosynthetic activity. This previously unrecognized mechanism of midday dew formation contributes to the water supply of most corticolous organisms, and may be a general feature in forest habitats world-wide.


Assuntos
Líquens/fisiologia , Fotossíntese/fisiologia , Casca de Planta/fisiologia , Árvores/fisiologia , Clima Tropical , Água/fisiologia , Ritmo Circadiano/fisiologia , Umidade , Estações do Ano , Temperatura
13.
Oecologia ; 169(3): 599-607, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22183705

RESUMO

Facilitative effects and plant-plant interactions are well known for higher plants, but there is a lack of information about their relevance in cryptogams. Additional information about facilitative effects between bryophytes and lichens would be an important contribution to recent research on positive plant-plant interactions, as these can have striking influences not only on the organisation of early successional terrestrial communities but also on succession dynamics by kick-starting ecosystem development through the import of key nutrients. We investigated and quantified these mechanisms between Peltigera rufescens and its associated mosses. Moss-associated thalli had a different morphology that led to several benefits from the association. They had 66% higher net photosynthetic rate and, because the majority of the gas exchange of lichen thalli took place through the lower surface, there was a further increase as the CO(2) concentration was >25% higher beneath moss-associated thalli. Microclimatic measurements showed that mean light levels were substantially lower and temperature extremes slightly ameliorated for moss-associated thalli. As a consequence, desiccation was slower which is, together with an increase in thallus thickness and water storage, the reason for extended periods of optimal net photosynthesis for the moss-associated thalli. All these benefits combined to produce a growth rate of the moss-associated thalli which was significantly higher, twice that of non-associated thalli [0.75 ± 0.4 vs. 0.30 ± 0.1 mm/month (mean ± SD)]. This appears to be the first demonstration of a strong mechanistic basis for facilitative effects between lichens and bryophytes.


Assuntos
Briófitas/fisiologia , Cianobactérias/fisiologia , Líquens/crescimento & desenvolvimento , Fotossíntese , Simbiose , Microclima
14.
Front Plant Sci ; 13: 880439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685010

RESUMO

Plants and other organisms have evolved structures and mechanisms for colonizing land since the Early Ordovician. In this context, their surfaces, the crucial physical interface with the environment, are mainly considered barriers against water loss. It is suggested that extreme water repellency (superhydrophobicity) was an additional key innovation for the transition of algae from water to land some 400 mya. Superhydrophobicity enhances gas exchange on land and excludes aquatic competitors in water films. In a different context, in material science and surface technology, superhydrophobicity has also become one of the most important bioinspired innovations enabling the avoidance of water films and contamination. Here, we present data for an extremely water-repellent cyanobacterial biofilm of the desiccation tolerant Hassallia byssoidea providing evidence for a much earlier prokaryotic Precambrian (ca. 1-2 bya) origin of superhydrophobicity and chemical heterogeneities associated with land transition. The multicellular cyanobacterium is functionally differentiated in a submerged basal hydrophilic absorbing portion like a "rhizoid" and an upright emersed superhydrophobic "phyllocauloid" filament for assimilation, nitrogen fixation, and splash dispersed diaspores. Additional data are provided for superhydrophobic surfaces in terrestrial green algae and in virtually all ancestral land plants (Bryophytes, ferns and allies, Amborella, Nelumbo), slime molds, and fungi. Rethinking of superhydrophobicity as an essential first step for life in terrestrial environments is suggested.

15.
Biol Rev Camb Philos Soc ; 97(5): 1768-1785, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35584903

RESUMO

Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as 'biocrust', it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Solo/química , Microbiologia do Solo
16.
Microorganisms ; 9(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918311

RESUMO

Since 1965 a cyanobacterial strain termed 'Fischerella ambigua 108b' was the object of several studies investigating its potential as a resource for new bioactive compounds in several European institutes. Over decades these investigations uncovered several unique small molecules and their respective biosynthetic pathways, including the polychlorinated triphenyls of the ambigol family and the tjipanazoles. However, the true taxonomic character of the producing strain remained concealed until now. Applying a polyphasic approach considering the phylogenetic position based on the 16S rRNA and the protein coding gene rbcLX, secondary structures and morphological features, we present the strain 'Fischerella ambigua 108b' as Symphyonema bifilamentata sp. nov. 97.28. Although there is the type species (holotype) S. sinense C.-C. Jao 1944 there is no authentic living strain or material for genetic analyses for the genus Symphyonema available. Thus we suggest and provide an epitypification of S. bifilamentata sp. nov. 97.28 as a valid reference for the genus Symphyonema. Its affiliation to the family Symphyonemataceae sheds not only new light on this rare taxon but also on the classes of bioactive metabolites of these heterocytous and true-branching cyanobacteria which we report here. We show conclusively that the literature on the isolation of bioactive products from this organism provides further support for a clear distinction between the secondary metabolism of Symphyonema bifilamentata sp. nov. 97.28 compared to related and other taxa, pointing to the assignment of this organism into a separate genus.

17.
Front Microbiol ; 12: 728378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690969

RESUMO

The last decades of research led to a change in understanding of lichens that are now seen as self-sustaining micro-ecosystems, harboring diverse microbial organisms in tight but yet not fully understood relationships. Among the diverse interdependencies, the relationship between the myco- and photobiont is the most crucial, determining the shape, and ecophysiological properties of the symbiotic consortium. Roughly 10% of lichens associate with cyanobacteria as their primary photobiont, termed cyanolichens. Up to now, the diversity of cyanobionts of bipartite lichens resolved by modern phylogenetic approaches is restricted to the filamentous and heterocytous genera of the order Nostocales. Unicellular photobionts were placed in the orders Chroococcales, Pleurocapsales, and Chroococcidiopsidales. However, especially the phylogeny and taxonomy of the Chroococcidiopsidales genera remained rather unclear. Here we present new data on the identity and phylogeny of photobionts from cyanolichens of the genera Gonohymenia, Lichinella, Peccania, and Peltula from a broad geographical range. A polyphasic approach was used, combining morphological and cultivation-depending characteristics (microscopy, staining techniques, life cycle observation, baeocyte motility, and nitrogen fixation test) with phylogenetic analyses of the 16S rRNA and 16S-23S ITS gene region. We found an unexpectedly high cyanobiont diversity in the cyanobacterial lichens of the order Lichinales, including two new genera and seven new species, all of which were not previously perceived as lichen symbionts. As a result, we describe the novel unicellular Chroococcidiopsidales genera Pseudocyanosarcina gen. nov. with the species Pseudocyanosarcina phycocyania sp. nov. (from Peltula clavata, Australia) and Compactococcus gen. nov. with the species Compactococcus sarcinoides sp. nov. (from Gonohymenia sp., Australia) and the new Chroococcidiopsidales species Aliterella compacta sp. nov. (from Peltula clavata, Australia), Aliterella gigantea sp. nov. (from Peltula capensis; South Africa), Sinocapsa ellipsoidea sp. nov. (from Peccania cerebriformis, Austria), as well as the two new Nostocales species Komarekiella gloeocapsoidea sp. nov. (from Gonohymenia sp., Czechia) and Komarekiella globosa sp. nov. (from Lichinella cribellifera, Canary Islands, Spain). Our study highlights the role of cyanolichens acting as a key in untangling cyanobacterial taxonomy and diversity. With this study, we hope to stimulate further research on photobionts, especially of rare cyanolichens.

18.
Life (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34575065

RESUMO

Unicellular cyanobacteria inhabit a wide range of ecosytems and can be found throughout the phylum offering space for taxonomic confusion. One example is strain PCC 6712 that was described as Chlorogloea sp. (Nostocales) and later assigned to the genus Chroococcidiopsis (Chroococcidiopsidales). We now show that this strain belongs to the order Pleurocapsales and term it Hyella disjuncta based on morphology, genome analyses and 16S-23S ITS rRNA phylogeny. Genomic analysis indicated that H. disjuncta PCC 6712 shared about 44.7% orthologue genes with its closest relative H. patelloides. Furthermore, 12 cryptic biosynthetic gene clusters (BGCs) with potential bioactivity, such as a mycosporine-like amino acid BGC, were detected. Interestingly, the full set of nitrogen fixation genes was found in H. disjuncta PCC 6712 despite its inability to grow on nitrogen-free medium. A comparison of genes responsible for multicellularity was performed, indicating that most of these genes were present and related to those found in other cyanobacterial orders. This is in contrast to the formation of pseudofilaments-a main feature of the genus Hyella-which is weakly expressed in H. disjuncta PCC 6712 but prominent in Hyella patelloides LEGE 07179. Thus, our study pinpoints crucial but hidden aspects of polyphasic cyanobacterial taxonomy.

19.
Front Microbiol ; 12: 671742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305839

RESUMO

The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S-23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S-23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.

20.
Syst Biol ; 58(2): 224-39, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20525580

RESUMO

We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.


Assuntos
Ascomicetos/genética , Filogenia , Ascomicetos/classificação , Ascomicetos/citologia , Ecossistema , Genes Fúngicos , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA