Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(17): 176701, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955488

RESUMO

Phonons and magnons are engineered by periodic potential landscapes in phononic and magnonic crystals, and their combined studies may enable valley phonon transport tunable by the magnetic field. Through nonreciprocal surface acoustic wave transmission, we demonstrate valley-selective phonon-magnon scattering in magnetoelastic superlattices. The lattice symmetry and the out-of-plane magnetization component control the sign of nonreciprocity. The phonons in the valleys play a crucial role in generating nonreciprocal transmission by inducing circularly polarized strains that couple with the magnons. The transmission spectra show a nonreciprocity peak near a transmission gap, matching the phononic band structure. Our results open the way for manipulating valley phonon transport through periodically varying magnon-phonon coupling.

2.
Nat Mater ; 18(9): 931-935, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31285619

RESUMO

Electric field control of spin-orbit torque in ferromagnets1 has been intensively pursued in spintronics to achieve efficient memory and computing devices with ultralow energy consumption. Compared with ferromagnets, antiferromagnets2,3 have huge potential in high-density information storage because of their ultrafast spin dynamics and vanishingly small stray field4-7. However, the manipulation of spin-orbit torque in antiferromagnets using electric fields remains elusive. Here we use ferroelastic strain from piezoelectric materials to switch the uniaxial magnetic anisotropy in antiferromagnetic Mn2Au films with an electric field of only a few kilovolts per centimetre at room temperature. Owing to the uniaxial magnetic anisotropy, we observe an asymmetric Néel spin-orbit torque8,9 in the Mn2Au, which is used to demonstrate an antiferromagnetic ratchet. The asymmetry of the Néel spin-orbit torque and the corresponding antiferromagnetic ratchet can be reversed by the electric field. Our finding sheds light on antiferromagnet-based memories with ultrahigh density and high energy efficiency.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31080382

RESUMO

Electric-field control of magnetism in ferromagnetic/ferroelectric multiferroic heterostructures is a promising way to realize fast and nonvolatile random-access memory with high density and low-power consumption. An important issue that has not been solved is the magnetic responses to different types of ferroelectric-domain switching. Here, for the first time three types of magnetic responses are reported induced by different types of ferroelectric domain switching with in situ electric fields in the CoFeB mesoscopic discs grown on PMN-PT(001), including type I and type II attributed to 109°, 71°/180° ferroelectric domain switching, respectively, and type III attributed to a combined behavior of multiferroelectric domain switching. Rotation of the magnetic easy axis by 90° induced by 109° ferroelectric domain switching is also found. In addition, the unique variations of effective magnetic anisotropy field with electric field are explained by the different ferroelectric domain switching paths. The spatially resolved study of electric-field control of magnetism on the mesoscale not only enhances the understanding of the distinct magnetic responses to different ferroelectric domain switching and sheds light on the path of ferroelectric domain switching, but is also important for the realization of low-power consumption and high-speed magnetic random-access memory utilizing these materials.

4.
Nat Commun ; 12(1): 322, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436572

RESUMO

Room-temperature skyrmions in magnetic multilayers are considered to be promising candidates for the next-generation spintronic devices. Several approaches have been developed to control skyrmions, but they either cause significant heat dissipation or require ultrahigh electric fields near the breakdown threshold. Here, we demonstrate electric-field control of skyrmions through strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric multiferroic heterostructures. We show the process of non-volatile creation of multiple skyrmions, reversible deformation and annihilation of a single skyrmion by performing magnetic force microscopy with in situ electric fields. Strain-induced changes in perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction strength are characterized experimentally. These experimental results, together with micromagnetic simulations, demonstrate that strain-mediated magnetoelectric coupling (via strain-induced changes in both the perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction is responsible for the observed electric-field control of skyrmions. Our work provides a platform to investigate electric-field control of skyrmions in multiferroic heterostructures and paves the way towards more energy-efficient skyrmion-based spintronics.

5.
ACS Appl Mater Interfaces ; 11(28): 25569-25577, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264829

RESUMO

Electric-field control of magnetism (EFCM) is very important for the exploration of high-density, fast, and nonvolatile random-access memory with ultralow energy consumption. Here, we report the electric-field-induced ferroelectric phase transitions in Pb(Mg1/3Nb2/3)0.82Ti0.18O3 (PMN-0.18PT) and symmetry breaking of EFCM behaviors for corresponding directions in multiferroic heterostructures composed of amorphous ferromagnetic Co40Fe40B20 (CoFeB) and PMN-0.18PT. We uncover a new mechanism behind the unusual phenomena, involving coupling between CoFeB and PMN-0.18PT via complex cooperation of electric-field-induced ferroelectric phase transitions, competition of different ferroelectric domains, and internal electric field in PMN-0.18PT. The deterministic EFCM with reversible and nonvolatile nature opens up a new avenue for exploring EFCM in multiferroic heterostructures and is also significant for applications.

6.
ACS Appl Mater Interfaces ; 9(12): 10855-10864, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266829

RESUMO

We report electric-field control of magnetism of (Co/Pt)3 multilayers involving perpendicular magnetic anisotropy with different Co-layer thicknesses grown on Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) FE substrates. For the first time, electric-field control of the interface magnetic anisotropy, which results in the spin reorientation transition, was demonstrated. The electric-field-induced changes of the bulk and interface magnetic anisotropies can be understood by considering the strain-induced change of magnetoelastic energy and weakening of Pt 5d-Co 3d hybridization, respectively. We also demonstrate the role of competition between the applied magnetic field and the electric field in determining the magnetization of the sample with the coexistence phase. Our results demonstrate electric-field control of magnetism by harnessing the strain-mediated coupling in multiferroic heterostructures with perpendicular magnetic anisotropy and are helpful for electric-field modulations of Dzyaloshinskii-Moriya interaction and Rashba effect at interfaces to engineer new functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA