RESUMO
BACKGROUND: Regulation of alternative splicing is a new therapeutic approach in cancer. The programmed cell death receptor 1 (PD-1) is an immunoinhibitory receptor expressed on immune cells that binds to its ligands, PD-L1 and PD-L2 expressed by cancer cells forming a dominant immune checkpoint pathway in the tumour microenvironment. Targeting this pathway using blocking antibodies (nivolumab and pembrolizumab) is the mainstay of anti-cancer immunotherapies, restoring the function of exhausted T cells. PD-1 is alternatively spliced to form isoforms that are either transmembrane signalling receptors (flPD1) that mediate T cell death by binding to the ligand, PD-L1 or an alternatively spliced, soluble, variant that lacks the transmembrane domain. METHODS: We used PCR and western blotting on primary peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, IL-2 ELISA, flow cytometry, co-culture of melanoma and cholangiocarcinoma cells, and bioinformatics analysis and molecular cloning to examine the mechanism of splicing of PD1 and its consequence. RESULTS: The soluble form of PD-1, generated by skipping exon 3 (∆Ex3PD1), was endogenously expressed in PBMCs and T cells and prevents cancer cell-mediated T cell repression. Multiple binding sites of SRSF1 are adjacent to PD-1 exon 3 splicing sites. Overexpression of phosphomimic SRSF1 resulted in preferential expression of flPD1. Inhibition of SRSF1 phosphorylation both by SRPK1 shRNA knockdown and by a selective inhibitor, SPHINX31, resulted in a switch in splicing to ∆Ex3PD1. Cholangiocarcinoma cell-mediated repression of T cell IL-2 expression was reversed by SPHINX31 (equivalent to pembrolizumab). CONCLUSIONS: These results indicate that switching of the splicing decision from flPD1 to ∆Ex3PD1 by targeting SRPK1 could represent a potential novel mechanism of immune checkpoint inhibition in cancer.
Assuntos
Processamento Alternativo , Colangiocarcinoma , Humanos , Fosforilação , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Arginina/genética , Arginina/metabolismo , Serina/química , Serina/genética , Serina/metabolismo , Exaustão das Células T , Interleucina-2/genética , Leucócitos Mononucleares/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ImunoterapiaRESUMO
Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.
Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Feminino , Humanos , Células Epiteliais Alveolares/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/metabolismo , Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/metabolismoRESUMO
Rationale: Lymphangioleiomyomatosis (LAM) is a multisystem disease that causes lung cysts and respiratory failure. Loss of TSC (tuberous sclerosis complex) gene function results in a clone of "LAM cells" with dysregulated mTOR (mechanistic target of rapamycin) activity. LAM cells and fibroblasts form lung nodules that also contain mast cells, although their significance is unknown. Objectives: To understand the mechanism of mast-cell accumulation and the role of mast cells in the pathogenesis of LAM. Methods: Gene expression was examined using transcriptional profiling and qRT-PCR. Mast cell/LAM nodule interactions were examined in vitro using spheroid TSC2-null cell/fibroblast cocultures and in vivo using an immunocompetent Tsc2-null murine homograft model. Measurements and Main Results: LAM-derived cell/fibroblast cocultures induced multiple CXC chemokines in fibroblasts. LAM lungs had increased tryptase-positive mast cells expressing CXCRs (CXC chemokine receptors) (P < 0.05). Mast cells located around the periphery of LAM nodules were positively associated with the rate of lung function loss (P = 0.016). LAM spheroids attracted mast cells, and this process was inhibited by pharmacologic and CRISPR/cas9 inhibition of CXCR1 and CXCR2. LAM spheroids caused mast-cell tryptase release, which induced fibroblast proliferation and increased LAM-spheroid size (1.36 ± 0.24-fold; P = 0.0019). The tryptase inhibitor APC366 and sodium cromoglycate (SCG) inhibited mast cell-induced spheroid growth. In vivo, SCG reduced mast-cell activation and Tsc2-null lung tumor burden (vehicle: 32.5.3% ± 23.6%; SCG: 5.5% ± 4.3%; P = 0.0035). Conclusions: LAM-cell/fibroblast interactions attract mast cells where tryptase release contributes to disease progression. Repurposing SCG for use in LAM should be studied as an alternative or adjunct to mTOR inhibitor therapy.
Assuntos
Biomarcadores Tumorais/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatose/metabolismo , Mastócitos/metabolismo , Triptases/metabolismo , Adulto , Animais , Biomarcadores Tumorais/genética , Quimiocinas/metabolismo , Progressão da Doença , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esferoides Celulares , Células Tumorais CultivadasRESUMO
Acute myeloid leukaemia (AML) is a heterogeneous clonal malignancy of hematopoietic progenitor cells. The Wnt pathway and its downstream targets are tightly regulated by ß-catenin. We recently discovered a new protein, FLYWCH1, which can directly bind nuclear ß-catenin. Herein, we studied the FLYWCH1/ß-catenin pathway in AML cells using qRT-PCR, Western blot, and immunofluorescence assays. In addition, the stemness activity and cell cycle were analysed by the colony-forming unit (CFU) using methylcellulose-based and Propidium iodide/flow cytometry assays. We found that FLYWCH1 mRNA and protein were differentially expressed in the AML cell lines. C-Myc, cyclin D1, and c-Jun expression decreased in the presence of higher FLYWCH1 expression, and vice versa. There appeared to be the loss of FLYWCH1 expression in dividing cells. The sub-G0 phase was prolonged and shortened in the low and high FLYWCH1 expression cell lines, respectively. The G0/G1 arrest correlated with FLYWCH1-expression, and these cell lines also formed colonies, whereas the low FLYWCH1 expression cell lines could not. Thus, FLYWCH1 functions as a negative regulator of the Wnt/ß-catenin pathway in AML.
Assuntos
Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Humanos , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , Via de Sinalização WntRESUMO
Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850.
Assuntos
Antineoplásicos/uso terapêutico , Células Epiteliais/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacosRESUMO
Embryonic NANOG (NANOG1) is considered as an important regulator of pluripotency while NANOGP8 (NANOG-pseudogene) plays a role in tumorigenesis. Herein, we show NANOG is expressed from both NANOG1 and NANOGP8 in human colorectal cancers (CRC). Enforced NANOG1-expression increases clonogenic potential and tumor formation in xenograft models, although it is expressed only in a small subpopulation of tumor cells and is colocalized with endogenous nuclear ß-catenin(High) . Moreover, single NANOG1-CRCs form spherical aggregates, similar to the embryoid body of embryonic stem cells (ESCs), and express higher levels of stem-like Wnt-associated target genes. Furthermore, we show that NANOG1-expression is positively regulated by c-JUN and ß-catenin/TCF4. Ectopic expression of c-Jun in murine Apc(Min/+) -ESCs results in the development of larger xenograft tumors with higher cell density compared to controls. Chromatin immunoprecipitation assays demonstrate that c-JUN binds to the NANOG1-promoter via the octamer M1 DNA element. Collectively, our data suggest that ß-Catenin/TCF4 and c-JUN together drive a subpopulation of CRC tumor cells that adopt a stem-like phenotype via the NANOG1-promoter.
Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sítios de Ligação , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Proteína Homeobox Nanog , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Pseudogenes , Transdução de Sinais/genética , Fator de Transcrição 4 , Fatores de Transcrição/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genéticaRESUMO
Little is known about the role of microRNAs (miRNAs) in rewiring the metabolism within tumours and adjacent non-tumour bearing normal tissue and their potential in cancer therapy. This study aimed to investigate the relationship between deregulated miRNAs and metabolic components in murine duodenal polyps and non-polyp-derived organoids (mPOs and mNPOs) from a double-mutant ApcMinFbxw7∆G mouse model of intestinal/colorectal cancer (CRC). We analysed the expression of 373 miRNAs and 12 deregulated metabolic genes in mPOs and mNPOs. Our findings revealed miR-135b might target Spock1. Upregulation of SPOCK1 correlated with advanced stages of CRCs. Knockdown of miR-135b decreased the expression level of SPOCK1, glucose consumption and lactic secretion in CRC patient-derived tumours organoids (CRC tPDOs). Increased SPOCK1 induced by miR-135b overexpression promoted the Warburg effect and consequently antitumour effect of 5-fluorouracil. Thus, combination with miR-135b antisense nucleotides may represent a novel strategy to sensitise CRC to the chemo-reagent based treatment.
RESUMO
Over recent years, several Cys2-His2 (C2H2) domain-containing proteins have emerged as critical players in repairing DNA-double strand breaks. Human FLYWCH1 is a newly characterised nuclear transcription factor with (C2H2)-type zinc-finger DNA-binding domains. Yet, our knowledge about FLYWCH1 is still in its infancy. This study explores the expression, role and regulation of FLYWCH1 in the context of DNA damage and repair. We provide evidence suggesting a potential contribution of FLYWCH1 in facilitating the recruitment of DNA-damage response proteins (DDRPs). We found that FLYWCH1 colocalises with γH2AX in normal fibroblasts and colorectal cancer (CRC) cell lines. Importantly, our results showed that enforced expression of FLYWCH1 induces the expression of γH2AX, ATM and P53 proteins. Using an ATM-knockout (ATMKO) model, we indicated that FLYWCH1 mediates the phosphorylation of H2AX (Ser139) independently to ATM expression. On the other hand, the induction of DNA damage using UV-light induces the endogenous expression of FLYWCH1. Conversely, cisplatin treatment reduces the endogenous level of FLYWCH1 in CRC cell lines. Together, our findings uncover a novel FLYWCH1/H2AX phosphorylation axis in steady-state conditions and during the induction of the DNA-damage response (DDR). Although the role of FLYWCH1 within the DDR machinery remains largely uncharacterised and poorly understood, we here report for the first-time findings that implicate FLYWCH1 as a potential participant in the DNA damage response signaling pathways.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Histonas/genética , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Linhagem Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Histonas/metabolismo , Humanos , Fosforilação , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with a variable clinical course. The lungs are infiltrated by nodules of LAM cells, stromal cells and inflammatory cells, causing lung cysts and respiratory failure. We used immunohistochemical markers in lung biopsy and transplant samples from a national cohort of women with LAM with linked clinical data to understand how LAM nodule cell populations changed with disease progression. Marker distribution was examined qualitatively by dual immunohistochemistry, and markers for LAM cells, fibroblasts, lymphatics, mast cells, proliferation, cathepsin K and mTOR pathway activity were quantitated in LAM nodules and compared with clinical features and prospective lung function loss. The LAM cell marker PNL2 was more extensively expressed in those with higher forced expiratory volume in one second (FEV1 ), higher diffusion in the lung for carbon monoxide (DLCO ) and less extensive disease involvement whilst the converse was true for the protease cathepsin K. Each percentage increase in cathepsin K reactivity was associated with a 0.65% decrease in FEV1 (95% CI -1.11 to -0.18) and a 0.50% decrease in DLCO (95% CI -0.96 to -0.05). Higher reactivity to the mTOR complex 1 activation marker, phospho-ribosomal protein S6, was associated with a better lung function response to rapamycin (p = 0.0001). We conclude that LAM nodules evolve with disease progression, with LAM cells becoming outnumbered by fibroblasts. Increasing cathepsin K expression is associated with more severe disease and lung function loss. Markers of mTOR activation predict the response to rapamycin, suggesting that more advanced LAM may be less mTOR responsive and treatments specifically targeted towards LAM associated fibroblasts may have roles as adjuncts to mTOR inhibition.
Assuntos
Progressão da Doença , Pulmão/patologia , Linfangioleiomiomatose , Neoplasias de Células Epitelioides Perivasculares , Adulto , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Catepsina K/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Imuno-Histoquímica , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/metabolismo , Linfangioleiomiomatose/patologia , Pessoa de Meia-Idade , Neoplasias de Células Epitelioides Perivasculares/metabolismo , Neoplasias de Células Epitelioides Perivasculares/patologia , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, where AM404 sensitivity was mimicked by FBXL5-knockout. This study uncovers a new molecular mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent.
RESUMO
Ataxia-telegiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), and p85α are key tumour suppressors. Whether ATM regulates PTEN expression and influence platinum sensitivity is unknown. We generated ATM knockdowns (KD) and CRISPR knock outs (KO) in glioblastoma (LN18, LN229) and ovarian cancer cells (OVCAR3, OVCAR4). Doxycycline inducible PTEN expression was generated in LN18 and LN229 cells. Transient KD of p85α, CK2, and XIAP was accomplished using siRNAs. Stable p85α knock-in was isolated in LN18 cells. Molecular biology assays included proteasome activity assays, PCR, flow cytometry analysis (cell cycle, double strand break accumulation, apoptosis), immunofluorescence, co-immunoprecipitation, clonogenic, invasion, migration, and 3D neurosphere assays. The clinicopathological significance of ATM, PTEN, p85α, and XIAP (X-linked inhibitor of apoptosis protein) was evaluated in 525 human ovarian cancers using immunohistochemistry. ATM regulated PTEN is p85α dependant. ATM also controls CK2α level which in turn phosphorylates and stabilizes PTEN. In addition, p85α physically interacts with CK2α and protects CK2α from ATM regulated degradation. ATM deficiency resulted in accumulation of XIAP/p-XIAP levels which ubiquitinated PTEN and CK2α thereby directing them to degradation. ATM depletion in the context of p85α deficiency impaired cancer cell migration and invasion reduced 3D-neurosphere formation and increased toxicity to cisplatin chemotherapy. Increased sensitivity to platinum was associated with DNA double strand breaks accumulation, cell cycle arrest, and induction of autophagy. In ovarian cancer patients, ATM, PTEN, p85α, and XIAP protein levels predicted better progression free survival after platinum therapy. We unravel a previously unknown function of ATM in the regulation of PTEN throµgh XIAP mediated proteasome degradation.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Platina/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/uso terapêutico , Doxiciclina/uso terapêutico , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Plasmídeos/genética , Estabilidade Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos , Ubiquitina-Proteína Ligases/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genéticaRESUMO
Colorectal cancer (CRC) patients develop recurrence after chemotherapy owing to the survival of stem cell-like cells referred to as cancer stem-like cells (CSCs). The origin of CSCs is linked to the epithelial-mesenchymal transition (EMT) process. Currently, it remains poorly understood how EMT programmes enable CSCs residing in the tumour microenvironment to escape the effects of chemotherapy. This study identifies a key molecular pathway that is responsible for the formation of drug-resistant CSC populations. Using a modified yeast-2-hybrid system and 2D gel-based proteomics methods, we show that the E3-ubiquitin ligase FBXW7 directly binds and degrades the EMT-inducing transcription factor ZEB2 in a phosphorylation-dependent manner. Loss of FBXW7 induces an EMT that can be effectively reversed by knockdown of ZEB2. The FBXW7-ZEB2 axis regulates such important cancer cell features, as stemness/dedifferentiation, chemoresistance and cell migration in vitro, ex vivo and in animal models of metastasis. High expression of ZEB2 in cancer tissues defines the reduced ZEB2 expression in the cancer-associated stroma in patients and in murine intestinal organoids, demonstrating a tumour-stromal crosstalk that modulates a niche and EMT activation. Our study thus uncovers a new molecular mechanism, by which the CRC cells display differences in resistance to chemotherapy and metastatic potential.
RESUMO
Wnt/ß-catenin signaling plays a critical role during development of both normal and malignant colorectal cancer tissues. Phosphorylation of ß-catenin protein alters its trafficking and function. Such conventional allosteric regulation usually involves a highly specialized set of molecular interactions, which may specifically turn on a particular cell phenotype. This study identifies a novel transcription modulator with an FLYWCH/Zn-finger DNA-binding domain, called "FLYWCH1." Using a modified yeast-2-hybrid based Ras-Recruitment system, it is demonstrated that FLYWCH1 directly binds to unphosphorylated (nuclear) ß-catenin efficiently suppressing the transcriptional activity of Wnt/ß-catenin signaling that cannot be rescued by TCF4. FLYWCH1 rearranges the transcriptional activity of ß-catenin/TCF4 to selectively block the expression of specific downstream genes associated with colorectal cancer cell migration and morphology, including ZEB1, EPHA4, and E-cadherin. Accordingly, overexpression of FLYWCH1 reduces cell motility and increases cell attachment. The expression of FLYWCH1 negatively correlates with the expression level of ZEB1 and EPHA4 in normal versus primary and metastatic colorectal cancer tissues in patients. Thus, FLYWCH1 antagonizes ß-catenin/TCF4 signaling during cell polarity/migration in colorectal cancer. IMPLICATIONS: This study uncovers a new molecular mechanism by which FLYWCH1 with a possible tumor suppressive role represses ß-catenin-induced ZEB1 and increases cadherin-mediated cell attachment preventing colorectal cancer metastasis.
Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/química , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Análise Serial de Tecidos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Dedos de ZincoRESUMO
We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.
Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Diferenciação Celular , Cromatina/metabolismo , Epigênese Genética , Células HL-60 , Hematopoese , Humanos , Células K562 , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Splicing de RNARESUMO
Serine/arginine-protein kinase 1 (SRPK1) regulates alternative splicing of VEGF-A to pro-angiogenic isoforms and SRPK1 inhibition can restore the balance of pro/antiangiogenic isoforms to normal physiological levels. The lack of potency and selectivity of available compounds has limited development of SRPK1 inhibitors, with the control of alternative splicing by splicing factor-specific kinases yet to be translated. We present here compounds that occupy a binding pocket created by the unique helical insert of SRPK1, and trigger a backbone flip in the hinge region, that results in potent (<10 nM) and selective inhibition of SRPK1 kinase activity. Treatment with these inhibitors inhibited SRPK1 activity and phosphorylation of serine/arginine splicing factor 1 (SRSF1), resulting in alternative splicing of VEGF-A from pro-angiogenic to antiangiogenic isoforms. This property resulted in potent inhibition of blood vessel growth in models of choroidal angiogenesis in vivo. This work identifies tool compounds for splice isoform selective targeting of pro-angiogenic VEGF, which may lead to new therapeutic strategies for a diversity of diseases where dysfunctional splicing drives disease development.
Assuntos
Neovascularização de Coroide/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Administração Oftálmica , HumanosRESUMO
OBJECTIVE: To assess the relative importance of fasting and postprandial hyperglycemia to vascular dysfunction in diabetes, we have measured indicators of glycation, oxidative and nitrosative stress in subjects with type 1 diabetes, and different postprandial glucose patterns. RESEARCH DESIGN AND METHODS: Plasma and urinary levels of specific arginine- and lysine-derived advanced glycation end products, as well as oxidative and nitrosative products, were measured by liquid chromatography with triple quadrupole mass spectrometric detection (LC-MS/MS) after 2 months of treatment with insulin lispro or human regular insulin in 21 subjects participating in a cross-over study. Hb-bound early glycation (Amadori) products were also measured after each treatment period by high-performance liquid chromatography (fructosyl-valine Hb or HbA1c [A1C]:Diamat) and fructosyl-lysine Hb by LC-MS/MS (A1C:fructosyl-lysine). RESULTS: In diabetic patients, the concentrations of protein glycation and oxidation-free adducts increased up to 10-fold, while urinary excretion increased up to 15-fold. Decreasing postprandial hyperglycemia with lispro gave 10-20% decreases of the major free glycation adducts, hydroimidazolones derived from methylglyoxal and 3-deoxyglucosone, and glyoxal-derived Nepsilon-carboxymethyl-lysine. No differences were observed in A1C:Diamat or A1C:fructosyl-lysine with lispro or regular insulin therapy in spite of significant decreases in postprandial glycemia with lispro. CONCLUSIONS: We conclude that the profound increases in proteolytic products of proteins modified by advanced glycation endproducts in diabetic patients are responsive to changes in mean hyperglycemia and also show responses to changes in postprandial hyperglycemia.
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Produtos Finais de Glicação Avançada/sangue , Hiperglicemia/metabolismo , Estresse Oxidativo , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/tratamento farmacológico , Jejum , Feminino , Hemoglobinas Glicadas/metabolismo , Produtos Finais de Glicação Avançada/urina , Humanos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Insulina/análogos & derivados , Insulina Lispro , Masculino , Pessoa de Meia-Idade , Nitrogênio/metabolismo , Oxirredução , Período Pós-PrandialRESUMO
Colorectal cancer (CRC) is one of the top three cancer-related causes of death worldwide. FBXW7 is a known tumor-suppressor gene, commonly mutated in CRC and in a variety of other epithelial tumors. Low expression of FBXW7 is also associated with poor prognosis. Loss of FBXW7 sensitizes cancer cells to certain drugs, while making them more resistant to other types of chemotherapies. However, is not fully understood how epithelial cells within normal gut and primary tumors respond to potential cancer therapeutics. We have studied genetically engineered mice in which the fbxw7 gene is conditionally knocked-out in the intestine (fbxw7(∆G)). To further investigate the mechanism of Fbxw7-action, we grew intestinal crypts from floxed-fbxw7 (fbxw7(fl/fl)) and fbxw7(ΔG) mice, in a Matrigel-based organoid (mini-gut) culture. The fbxw7(ΔG) organoids exhibited rapid budding events in the crypt region. Furthermore, to test organoids for drug response, we exposed day 3 intestinal organoids from fbxw7(fl/fl) and fbxw7(∆G) mice, to various concentrations of 5-fluorouracil (5-FU) for 72 hours. 5-FU triggers phenotypic differences in organoids including changing shape, survival, resistance, and death. 5-FU however, rescues the drug-resistance phenotype of fbxw7(ΔG) through the induction of terminal differentiation. Our results support the hypothesis that a differentiating therapy successfully targets FBXW7-mutated CRC cells.
RESUMO
Triosephosphate isomerase deficiency is associated with the accumulation of dihydroxyacetonephosphate (DHAP) to abnormally high levels, congenital haemolytic anaemia and a clinical syndrome of progressive neuromuscular degeneration leading to infant mortality. DHAP degrades spontaneously to methylglyoxal (MG)--a potent precursor of advanced glycation endproducts (AGEs). MG is detoxified to D-lactate intracellularly by the glyoxalase system. We investigated the changes in MG metabolism and markers of protein glycation, oxidation and nitrosation in a Hungarian family with two germline identical brothers, compound heterozygotes for triosephosphate isomerase deficiency, one with clinical manifestations of chronic neurodegeneration and the other neurologically intact. The concentration of MG and activity of glyoxalase I in red blood cells (RBCs) were increased, and the concentrations of D-lactate in blood plasma and D-lactate urinary excretion were also increased markedly in the propositus. There were concomitant increases in MG-derived AGEs and the oxidative marker dityrosine in hemoglobin. Smaller and nonsignificant increases were found in the neurologically unaffected brother and parents. There was a marked increase (15-fold) in urinary excretion of the nitrosative stress marker 3-nitrotyrosine in the propositus. The increased derangement of MG metabolism and associated glycation, oxidative and nitrosative stress in the propositus may be linked to neurodegenerative process in triosephosphate isomerase deficiency.
Assuntos
Proteínas/metabolismo , Aldeído Pirúvico/metabolismo , Triose-Fosfato Isomerase/deficiência , Eritrócitos/enzimologia , Glicosilação , Humanos , Lactoilglutationa Liase/metabolismo , Nitratos/metabolismo , Nitrosação , Oxirredução , Tioléster Hidrolases/metabolismo , Triose-Fosfato Isomerase/metabolismoRESUMO
Accumulation of triosephosphates arising from high cytosolic glucose concentrations in hyperglycemia is the trigger for biochemical dysfunction leading to the development of diabetic nephropathy-a common complication of diabetes associated with a high risk of cardiovascular disease and mortality. Here we report that stimulation of the reductive pentosephosphate pathway by high-dose therapy with thiamine and the thiamine monophosphate derivative benfotiamine countered the accumulation of triosephosphates in experimental diabetes and inhibited the development of incipient nephropathy. High-dose thiamine and benfotiamine therapy increased transketolase expression in renal glomeruli, increased the conversion of triosephosphates to ribose-5-phosphate, and strongly inhibited the development of microalbuminuria. This was associated with decreased activation of protein kinase C and decreased protein glycation and oxidative stress-three major pathways of biochemical dysfunction in hyperglycemia. Benfotiamine also inhibited diabetes-induced hyperfiltration. This was achieved without change in elevated plasma glucose concentration and glycated hemoglobin in the diabetic state. High-dose thiamine and benfotiamine therapy is a potential novel strategy for the prevention of clinical diabetic nephropathy.