Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214607

RESUMO

Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D in vitro model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.

2.
J Surg Res ; 296: 383-403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309220

RESUMO

Burn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound. Currently, split-thickness/full-thickness skin autografts are the gold standard for permanent skin substitution. However, deep burns treated with split-thickness skin autografts may contract, leading to functional and appearance issues. Conversely, defects treated with full-thickness skin autografts often result in more satisfactory function and appearance. The development of tissue-engineered dermal templates has further expanded the scope of wound repair, providing scar reductive and regenerative properties that have extended their use to reconstructive surgical interventions. Although their interactions with the wound microenvironment are not fully understood, these templates have shown potential in local infection control. This narrative review discusses the current state of wound repair in burn injuries, focusing on the progress made from wound cover to wound closure and local infection control. Advancements in technology and therapies hold promise for improving the outcomes for burn injury patients. Understanding the underlying mechanisms of wound repair and tissue regeneration may provide new insights for developing more effective treatments in the future.


Assuntos
Queimaduras , Humanos , Queimaduras/cirurgia , Queimaduras/patologia , Pele/patologia , Cicatrização , Transplante de Pele/métodos , Cicatriz/etiologia , Cicatriz/prevenção & controle , Cicatriz/cirurgia
3.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474083

RESUMO

Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.


Assuntos
Artroplastia de Substituição , Células-Tronco Mesenquimais , Titânio/química , Propriedades de Superfície , Carbono/química , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982766

RESUMO

Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-ß1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.


Assuntos
Tecido Adiposo , Colágeno , Animais , Suínos , Humanos , Células Cultivadas , Colágeno/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Géis/metabolismo , Engenharia Tecidual/métodos
5.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286439

RESUMO

Major challenges facing clinicians treating burn wounds are the lack of integration of treatment to wound, inadequate mechanical properties of treatments, and high infection rates which ultimately lead to poor wound resolution. Electrospun chitosan membranes (ESCM) are gaining popularity for use in tissue engineering applications due to their drug loading ability, biocompatibility, biomimetic fibrous structure, and antimicrobial characteristics. This work aims to modify ESCMs for improved performance in burn wound applications by incorporating elastin and magnesium-phosphate particles (MgP) to improve mechanical and bioactive properties. The following ESCMs were made to evaluate the individual components' effects; (C: chitosan, CE: chitosan-elastin, CMg: chitosan-MgP, and CEMg: chitosan-elastin-MgP). Membrane properties analyzed were fiber size and structure, hydrophilic properties, elastin incorporation, MgP incorporation and in vitro release, mechanical properties, degradation profiles, and in vitro cytocompatibility with NIH3T3 fibroblasts. The addition of both elastin and MgP increased the average fiber diameter of CE (~400 nm), CMg (~360 nm), and CEMg (565 nm) compared to C (255 nm). Water contact angle analysis showed elastin incorporated membranes (CE and CEMg) had increased hydrophilicity (~50°) compared to the other groups (C and CMg, ~110°). The results from the degradation study showed mass retention of ~50% for C and CMg groups, compared to ~ 30% seen in CE and CEMg after 4 weeks in a lysozyme/PBS solution. CMg and CEMg exhibited burst-release behavior of ~6 µg/ml or 0.25 mM magnesium within 72 h. In vitro analysis with NIH3T3 fibroblasts showed CE and CEMg groups had superior cytocompatibility compared to C and CMg. This work has demonstrated the successful incorporation of elastin and MgP into ESCMs and allows for future studies on burn wound applications.


Assuntos
Anti-Infecciosos , Queimaduras , Quitosana , Nanofibras , Animais , Camundongos , Anti-Infecciosos/farmacologia , Quitosana/química , Elastina , Magnésio , Muramidase/farmacologia , Nanofibras/química , Células NIH 3T3 , Fosfatos , Cicatrização
6.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328732

RESUMO

Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton's jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Remodelação Vascular , Células Alógenas , Animais , Prótese Vascular , Artérias Carótidas , Bovinos , Humanos , Hiperplasia , Pericárdio , Ovinos , Suínos , Engenharia Tecidual
7.
Connect Tissue Res ; 62(5): 554-569, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32951485

RESUMO

AIM: Clubfoot is a congenital deformity affecting the musculoskeletal system, resulting in contracted and stiff tissue in the medial part of the foot. Minoxidil (MXD) has an inhibitory effect on lysyl hydroxylase, which influences the quality of extracellular matrix crosslinking, and could therefore be used to reduce the stiffness and to improve the flexibility of the tissue. We assessed the in vitro antifibrotic effects of minoxidil on clubfoot-derived cells. METHODS: Cell viability and proliferation were quantified by xCELLigence, MTS, and LIVE/DEAD assays. The amount of collagen I deposited into the extracellular matrix was quantified using immunofluorescence with subsequent image segmentation analysis, hydroxyproline assay, and Second Harmonic Generation imaging. Extracellular matrix contraction was studied in a 3D model of cell-populated collagen gel lattices. RESULTS: MXD concentrations of 0.25, 0.5, and 0.75 mM inhibited the cell proliferation in a concentration-dependent manner without causing a cytotoxic effect. Exposure to ≥0.5 mM MXD resulted in a decrease in collagen type I accumulation after 8 and 21 days in culture. Changes in collagen fiber assembly were observed by immunofluorescence microscopy and nonlinear optical microscopy (second harmonic generation). MXD also inhibited the contraction of cell-populated collagen lattices (0.5 mM by 22%; 0.75 mM by 28%). CONCLUSIONS: Minoxidil exerts an in vitro inhibitory effect on the cell proliferation, collagen accumulation, and extracellular matrix contraction processes that are associated with clubfoot fibrosis. This study provides important preliminary results demonstrating the potential relevance of MXD for adjuvant pharmacological therapy in standard treatment of relapsed clubfoot.


Assuntos
Pé Torto Equinovaro , Colágeno , Colágeno Tipo I , Tratamento Conservador , Humanos , Minoxidil/farmacologia
8.
Aesthetic Plast Surg ; 45(5): 2379-2394, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33876289

RESUMO

BACKGROUND: An understanding of fat grafting methodology, techniques and patient-related factors is crucial when considering fat grafting. Multiple factors can influence the success of a fat graft and consequently the outcome of the procedure. The aim of this systematic review is to elucidate the influence of negative pressure and various techniques of fat harvesting on the viability and function of cells, particularly adipocytes and adipose-derived stem cells. METHODS: We conducted a literature search from 1975 to 2020 using the PubMed bibliography, ScienceDirect, SCOPUS and the Google Scholar databases which produced 168,628 articles on the first pass. After applying all the exclusion criteria by two independent reviewers, we were left with 21 articles (level IV of Oxford Centre for Evidence-Based Studies and Grade C of Grade Practice Recommendation from the American Society of Plastic Surgeons) on which this review is based. RESULTS: From 11 studies focused on different negative pressures, no one found using high negative pressure advantageous. Summarising 13 studies focused on various harvesting techniques (excision, syringe, and pump-machine), most often equal results were reported, followed by excision being better than either syringe or liposuction. CONCLUSION: From our systematic review, we can conclude that the low negative pressure seems to yield better results and that the excision seems to be the most sparing method for fat graft harvesting. However, we have to point out that this conclusion is based on a very limited number of statistically challengeable articles and we recommend well-conducted further research. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Lipectomia , Adipócitos , Tecido Adiposo , Animais , Humanos , Coleta de Tecidos e Órgãos , Transplante Autólogo , Resultado do Tratamento
9.
Aesthetic Plast Surg ; 45(6): 2952-2970, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34128093

RESUMO

BACKGROUND: The volume effect of fat grafting is highly dependent on the presence of viable adipocytes and other nucleated cells within the lipoaspirate. We suspected that one of the crucial factors influencing cell viability is the negative pressure applied during the fat graft harvesting and the suitability of various harvest sites when compared to others. Despite much discussion, there is no consensus on the optimal negative pressure or the best site for harvesting so we designed an experiment to test this. METHODS: Fat graft taken under low negative pressure (- 200 mmHg) or high negative pressure (- 700 mmHg) from the thigh or abdominal regions from 21 healthy human donors was evaluated. The principal variables studied were: a) total number and viability of nucleated cells, b) liposuction duration and c) blood admixture. Other variables studied were body mass index, the impact of age and enzymatic digestion. RESULTS: The absolute number and viability of nucleated cells and the blood admixture did not differ significantly between lipoaspirates obtained under different vacuum conditions or from different regions. The time taken to acquire the same volume of lipoaspirate was significantly increased using low negative pressure. The time taken to collect cells in the thigh region significantly increased with increasing BMI but this correlation was not found when harvesting in the abdominal region. The BMI and age did not impact the results in any of the measured variables. The enzymatic digestion rate was independent of the negative pressure used to harvest. CONCLUSION: Our results indicate that neither the negative pressure used nor the area chosen has any significant influence on the viability and yield of harvested cells. The time taken to obtain lipoaspirate using low pressure is significantly longer than when using high pressure. No significant difference was found in the value of blood admixture using different vacuum pressures, and no correlation exists between the body mass index and the cell viability or age of the patients and the time of liposuction. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine Ratings, please refer to Table of Contents or online Instructions to Authors www.springer.com/00266 .


Assuntos
Lipectomia , Adipócitos , Tecido Adiposo , Sobrevivência Celular , Humanos , Coleta de Tecidos e Órgãos
10.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067978

RESUMO

Galectin-3 (Gal-3) is a ß-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a ß-galactoside LacdiNAc (GalNAcß1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by ß1 and αV integrins-namely α5ß1, αVß3, and αVß1 integrins.


Assuntos
Proteínas Sanguíneas/metabolismo , Adesão Celular , Junções Célula-Matriz/metabolismo , Galectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Integrinas/metabolismo , Células-Tronco Mesenquimais/fisiologia , Sítios de Ligação , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA