Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Methods ; 16(5): 446, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30992571

RESUMO

In the originally published Supplementary Information for this paper, the files presented as Supplementary Tables 3, 4, and 7 were duplicates of Supplementary Tables 5, 6, and 9, respectively. All Supplementary Table files are now correct online.

2.
Nat Methods ; 16(4): 295-298, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923379

RESUMO

We report a computational approach (implemented in MS-DIAL 3.0; http://prime.psc.riken.jp/) for metabolite structure characterization using fully 13C-labeled and non-labeled plants and LC-MS/MS. Our approach facilitates carbon number determination and metabolite classification for unknown molecules. Applying our method to 31 tissues from 12 plant species, we assigned 1,092 structures and 344 formulae to 3,604 carbon-determined metabolite ions, 69 of which were found to represent structures currently not listed in metabolome databases.


Assuntos
Biologia Computacional/métodos , Genes de Plantas , Metaboloma , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isótopos de Carbono , Cromatografia Líquida , Bases de Dados Factuais , Marcação por Isótopo , Espectrometria de Massas , Metabolômica , Folhas de Planta , Raízes de Plantas , Caules de Planta , Software , Especificidade da Espécie , Espectrometria de Massas em Tandem
3.
Plant Cell Physiol ; 60(5): 1011-1024, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715458

RESUMO

Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.


Assuntos
Flores/metabolismo , Flores/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Tisanópteros/patogenicidade , Tricomas/metabolismo , Animais , Flores/genética , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Tricomas/genética
4.
Plant Cell ; 27(7): 1857-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26163573

RESUMO

For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Locos de Características Quantitativas/genética , Fertilidade/genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Variação Genética , Haplótipos/genética , Inflorescência/genética , Padrões de Herança/genética , Desequilíbrio de Ligação/genética , Anotação de Sequência Molecular , Mutação/genética , Tamanho do Órgão/genética , Pólen/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/anatomia & histologia , Sementes/genética , Estatísticas não Paramétricas
5.
New Phytol ; 213(3): 1346-1362, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27699793

RESUMO

Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Estresse Fisiológico/genética , DNA Bacteriano/genética , Genes de Plantas , Estudos de Associação Genética , Padrões de Herança/genética , Modelos Genéticos , Mutação/genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
6.
Plant Cell Environ ; 39(1): 88-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26138664

RESUMO

Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory networks of flowering time and drought response or correlated responses of these traits to natural selection. In addition, plant size was negatively correlated with relative water content (RWC) independent of the absolute water content (WC), indicating a prominent role for soluble compounds. Growth in control and drought conditions was determined over time and was modelled by an exponential function. Genome-wide association (GWA) mapping of temporal plant size data and of model parameters resulted in the detection of six time-dependent quantitative trait loci (QTLs) strongly associated with drought. Most QTLs would not have been identified if plant size was determined at a single time point. Analysis of earlier reported gene expression changes upon drought enabled us to identify for each QTL the most likely candidates.


Assuntos
Arabidopsis/genética , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Mapeamento Cromossômico , Secas , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estresse Fisiológico , Fatores de Tempo , Água/fisiologia
7.
J Exp Bot ; 66(18): 5567-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25922493

RESUMO

Growth is a complex trait determined by the interplay between many genes, some of which play a role at a specific moment during development whereas others play a more general role. To identify the genetic basis of growth, natural variation in Arabidopsis rosette growth was followed in 324 accessions by a combination of top-view imaging, high-throughput image analysis, modelling of growth dynamics, and end-point fresh weight determination. Genome-wide association (GWA) mapping of the temporal growth data resulted in the detection of time-specific quantitative trait loci (QTLs), whereas mapping of model parameters resulted in another set of QTLs related to the whole growth curve. The positive correlation between projected leaf area (PLA) at different time points during the course of the experiment suggested the existence of general growth factors with a function in multiple developmental stages or with prolonged downstream effects. Many QTLs could not be identified when growth was evaluated only at a single time point. Eleven candidate genes were identified, which were annotated to be involved in the determination of cell number and size, seed germination, embryo development, developmental phase transition, or senescence. For eight of these, a mutant or overexpression phenotype related to growth has been reported, supporting the identification of true positives. In addition, the detection of QTLs without obvious candidate genes implies the annotation of novel functions for underlying genes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Processamento de Imagem Assistida por Computador , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
8.
Front Plant Sci ; 12: 695908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276745

RESUMO

For a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment. Subsequently, we applied MeJA every 3 weeks or based on scouting pests during a whole cropping cycle. Thrips leaf bioassays and LC-MS leaf metabolomics were applied to investigate the induction of defenses. Leaf damage by thrips was lower for both MeJA application schemes compared to the control except for the last weeks. While elicitor treatments after scouting also reduced damage, its effect did not last. Thrips damage decreased from vegetative to mature plants during the cropping cycle. At the end of the nursery phase, plants in the elicitor treatment were smaller. Surprisingly, growth during production was not affected by MeJA application, as were fruit yield and quality. LC-MS leaf metabolomics showed strong induction of vegetative plants decreasing during the maturation of plants toward the end of cultivation. Concurrently, no increase in the JA-inducible marker PPO was observed when measured toward the end of cultivation. Mostly flavonoid and phenolic glycosides known as plant defense compounds were induced upon MeJA application. While induced defense decreased with the maturation of plants, constitutive defense increased as measured in the leaf metabolome of control plants. Our data propose that young, relatively small plant stages lack constitutive defense necessitating an active JA defense response. As plants, mature constitutive defense metabolites seem to accumulate, providing a higher level of basal resistance. Our results have important implications for but are not limited to strawberry cultivation. We demonstrated that repeated elicitor application could be deployed as part of an integrated approach for sustainable crop protection by vertical integration with other management tactics and horizontal integration to control multiple pests concurrently. This approach forms a promising potential for long-term crop protection in greenhouses.

9.
PLoS One ; 10(11): e0143212, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26588092

RESUMO

Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA) mapping approach revealed that sequence diversity in a small 15 kb region on chromosome 1 explained 40% of the variation observed. Sequence and expression analyses of alleles of the candidate gene MYB90 identified a causal polymorphism at amino acid (AA) position 210 of this transcription factor of the anthocyanin biosynthesis pathway. This amino acid discriminates the two most frequent alleles of MYB90. Both alleles are present in a substantial part of the population, suggesting balancing selection between these two alleles. Analysis of the geographical origin of the studied accessions suggests that the macro climate is not the driving force behind positive or negative selection for anthocyanin accumulation. An important role for local climatic conditions is, therefore, suggested. This study emphasizes that GWA mapping is a powerful approach to identify alleles that are under balancing selection pressure in nature.


Assuntos
Antocianinas/metabolismo , Arabidopsis/genética , Seleção Genética , Fatores de Transcrição/genética , Alelos , Aminoácidos/química , Calmodulina/química , Mapeamento Cromossômico , Cromossomos de Plantas/ultraestrutura , Evolução Molecular , Frequência do Gene , Estudos de Associação Genética , Variação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA