Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1810(3): 259-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20933574

RESUMO

BACKGROUND: The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system. SCOPE OF REVIEW: This review describes our recent discovery that living cells can organize extended nanostructures and nano-objects to create a highly biocompatible nano//bio interface [1]. MAJOR CONCLUSIONS: We find that short chain phospholipids direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA) [2], and that the introduction of cells alter the self-assembly pathway. Cells organize an ordered lipid-membrane that forms a coherent interface with the silica mesophase that is unique in that it withstands drying-yet it maintains accessibility to molecules introduced into the 3D silica host. Cell viability is preserved in the absence of buffer, making these constructs useful as standalone cell-based sensors. In response to hyperosmotic stress, the cells release water, creating a pH gradient which is maintained within the nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting-processes allowing patterning of cellular arrays-and even spatially-defined genetic modification. GENERAL SIGNIFICANCE: Recent advances in the understanding of nanotechnology and cell biology encourage the pursuit of more complex endeavors where the dynamic interactions of the cell and host material act symbiotically to obtain new, useful functions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.


Assuntos
Membrana Celular/química , Células/química , Lipídeos/química , Nanoestruturas/química , Nanotecnologia , Animais , Humanos
2.
Chem Mater ; 23(8): 2107-2112, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21572556

RESUMO

The fabrication of nanostructured films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing-incidence small-angle x-ray scattering data. Removal of GMO by UV/O(3) treatment or acid extraction induces a phase change to a nanoporous body-centered structure which we tentatively identify as based on the IW-P surface. To improve film quality, we add a co-surfactant to the GMO in a mass ratio of 1:10; when this co-surfactant is cetyltrimethylammonium bromide, we find an unusually large pore size (8-12 nm) in acid extracted films, while UV/O(3) treated films yield pores of only ca. 4 nm. Using this pore size dependence on film processing procedure, we create a simple method for patterning pore size in nanoporous films, demonstrating spatially-defined size-selective molecular adsorption.

3.
Langmuir ; 25(16): 9500-9, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19496546

RESUMO

The nanostructure of silica and hybrid thin film mesophases templated by phospholipids via an evaporation-induced self-assembly (EISA) process was investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Diacyl phosphatidylcholines with two tails of 6 or 8 carbons were found to template 2D hexagonal mesophases, with the removal of lipid from these lipid/silica films by thermal or UV/O3 processing resulting in a complete collapse of the pore volume. Monoacyl phosphatidylcholines with single tails of 10-14 carbons formed 3D micellular mesophases; the lipid was found to be extractable from these 3D materials, yielding a porous material. In contrast to pure lipid/silica thin film mesophases, films formed from the hybrid bridged silsesquioxane precursor bis(triethoxysilyl)ethane exhibited greater stability toward (both diacyl and monoacyl) lipid removal. Ellipsometric, FTIR, and NMR studies show that the presence of phospholipid suppresses siloxane network formation, while actually promoting condensation reactions in the hybrid material. 1D X-ray scattering and FTIR data were found to be consistent with strong interactions between lipid headgroups and the silica framework.


Assuntos
Lipídeos/química , Nanoestruturas/química , Dióxido de Silício/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X , Raios X
4.
Acc Chem Res ; 40(9): 836-45, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17672518

RESUMO

When lipid-directed assembly of silicic acid precursors is conducted in the presence of living cells, the cells intervene, surrounding themselves with a fluid, multilayered lipid vesicle that interfaces coherently with an ordered silica mesophase. This bio/nano interface is unique in that its uniform nanostructure prevents excessive drying of water, maintaining cell viability, yet provides accessibility of the cell surface to small molecules. In comparison to existing immobilization schemes, such as encapsulation within sol-gel matrices, we show this interface to form by an active interplay between the living cell and surrounding matrix, which we refer to as cell-directed assembly (CDA). Importantly and perhaps uniquely, CDA creates a localized nanostructured microenvironment within which three-dimensional chemical gradients are established and maintained.


Assuntos
Células , Nanoestruturas
5.
Science ; 313(5785): 337-41, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857936

RESUMO

Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing.


Assuntos
Bacillus subtilis/fisiologia , Células Imobilizadas , Escherichia coli/fisiologia , Nanoestruturas , Fosfolipídeos , Saccharomyces cerevisiae/fisiologia , Dióxido de Silício , Soluções Tampão , Membrana Celular , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/biossíntese , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas , Micelas , Microscopia Eletrônica , Proteínas Recombinantes/biossíntese , Espalhamento de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA