Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2115973119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235463

RESUMO

White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.


Assuntos
Axônios , Nervo Óptico/patologia , Remielinização , Retina/patologia , Transtornos da Visão/patologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Visuais , Macaca fascicularis , Masculino , Esclerose Múltipla/patologia , Reflexo Pupilar , Retina/diagnóstico por imagem , Retina/fisiopatologia , Tomografia de Coerência Óptica
2.
Glia ; 72(8): 1518-1540, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38794866

RESUMO

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.


Assuntos
Bainha de Mielina , Oligodendroglia , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Oligodendroglia/metabolismo , Animais , Bainha de Mielina/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Ratos , Actinas/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Citoesqueleto de Actina/metabolismo
3.
Glia ; 69(8): 1916-1931, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811384

RESUMO

Common in vitro models used to study the mechanisms regulating myelination rely on co-cultures of oligodendrocyte precursor cells (OPCs) and neurons. In such models, myelination occurs in an environment that does not fully reflect cell-cell interactions and environmental cues present in vivo. To avoid these limitations while specifically manipulating oligodendroglial cells, we developed a reliable ex vivo model of myelination by seeding OPCs on cerebellar slices, deprived of their endogenous oligodendrocytes. We showed that exogenous OPCs seeded on unmyelinated cerebella, efficiently differentiate and form compact myelin. Spectral confocal reflectance microscopy and electron microscopy analysis revealed that the density of compacted myelin sheaths highly increases all along the culture. Importantly, we defined the appropriate culture time frame to study OPC differentiation and myelination, using accurate quantification resources we generated. Thus, this model is a powerful tool to study the cellular and molecular mechanisms of OPC differentiation and myelination. Moreover, it is suitable for the development and validation of new therapies for myelin-related disorders such as multiple sclerosis and psychiatric diseases.


Assuntos
Células Precursoras de Oligodendrócitos , Oligodendroglia , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia
4.
Proc Natl Acad Sci U S A ; 114(11): E2243-E2252, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28246330

RESUMO

Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fatores de Transcrição/genética , Animais , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Morte Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Análise por Conglomerados , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Expressão Ectópica do Gene , Perfilação da Expressão Gênica , Humanos , Camundongos , Mutação , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Estresse Oxidativo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Fatores de Transcrição/metabolismo , Transcriptoma , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Acta Neuropathol ; 138(3): 457-476, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31011859

RESUMO

Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological conditions. However, how SC invade the CNS to remyelinate central axons remains undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous transplantation in the demyelinated spinal cord. The data highlight for the first time that SC migrate preferentially along blood vessels in perivascular extracellular matrix (ECM), avoiding CNS myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue of a dual mode of action of Eph/ephrin signaling. Indeed, EphrinB3, enriched in myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and triggers their preferential adhesion to ECM components, such as fibronectin via integrinß1 interactions. This complex interplay enhances SC migration along the blood vessel network and together with lesion-induced vascular remodeling facilitates their timely invasion of the lesion site. These novel findings elucidate the mechanism by which SC invade and contribute to spinal cord repair.


Assuntos
Vasos Sanguíneos , Movimento Celular/fisiologia , Efrina-B3/metabolismo , Remielinização/fisiologia , Células de Schwann/fisiologia , Medula Espinal/metabolismo , Animais , Doenças Desmielinizantes/patologia , Feminino , Fibronectinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Medula Espinal/patologia
6.
J Neurosci ; 37(24): 5885-5899, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28522736

RESUMO

Remyelination of CNS axons by Schwann cells (SCs) is not efficient, in part due to the poor migration of SCs into the adult CNS. Although it is known that migrating SCs avoid white matter tracts, the molecular mechanisms underlying this exclusion have never been elucidated. We now demonstrate that myelin-associated glycoprotein (MAG), a well known inhibitor of neurite outgrowth, inhibits rat SC migration and induces their death via γ-secretase-dependent regulated intramembrane proteolysis of the p75 neurotrophin receptor (also known as p75 cleavage). Blocking p75 cleavage using inhibitor X (Inh X), a compound that inhibits γ-secretase activity before exposing to MAG or CNS myelin improves SC migration and survival in vitro Furthermore, mouse SCs pretreated with Inh X migrate extensively in the demyelinated mouse spinal cord and remyelinate axons. These results suggest a novel role for MAG/myelin in poor SC-myelin interaction and identify p75 cleavage as a mechanism that can be therapeutically targeted to enhance SC-mediated axon remyelination in the adult CNS.SIGNIFICANCE STATEMENT Numerous studies have used Schwann cells, the myelin-making cells of the peripheral nervous system to remyelinate adult CNS axons. Indeed, these transplanted cells successfully remyelinate axons, but unfortunately they do not migrate far and so remyelinate only a few axons in the vicinity of the transplant site. It is believed that if Schwann cells could be induced to migrate further and survive better, they may represent a valid therapy for remyelination. We show that myelin-associated glycoprotein or CNS myelin, in general, inhibit rodent Schwann cell migration and induce their death via cleavage of the neurotrophin receptor p75. Blockade of p75 cleavage using a specific inhibitor significantly improves migration and survival of the transplanted Schwann cells in vivo.


Assuntos
Apoptose/fisiologia , Movimento Celular/fisiologia , Glicoproteína Associada a Mielina/metabolismo , Crescimento Neuronal/fisiologia , Células de Schwann/citologia , Células de Schwann/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Nus , Bainha de Mielina/metabolismo
7.
Glia ; 66(10): 2221-2232, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152028

RESUMO

Oligodendrocyte development is a critical process timely and spatially regulated to ensure proper myelination of the central nervous system. HMG-box transcription factors are key regulators of oligodendrocyte lineage progression. Among these factors, Sox17 was previously identified as a positive regulator of oligodendrocyte development. However, the role of Sox17 in oligodendroglial cell lineage progression and differentiation is still poorly understood. To define the functional role of Sox17, we generated new transgenic mouse models with inducible overexpression of Sox17, specifically in oligodendroglial cells. Here, we report that gain of Sox17 function has no effect on oligodendrocyte progenitor cells (OPCs) specification. During early postnatal development, Sox17 overexpression increases the pool of OPCs at the expense of differentiated oligodendrocytes. However, the oligodendroglial cell population, OPC proliferation and apoptosis remained unchanged in Sox17 transgenic mice. RNA sequencing, quantitative RT-PCR and immunohistochemical analysis showed that Sox17 represses the expression of the major myelin genes, resulting in a severe CNS hypomyelination. Overall, our data highlight an unexpected role for Sox17 as a negative regulator of OPC differentiation and myelination, suggesting stage specific functions for this factor during oligodendroglial cell lineage progression.


Assuntos
Diferenciação Celular/fisiologia , Proteínas HMGB/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Apoptose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Camundongos Transgênicos , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fatores de Transcrição SOXF/genética , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/patologia , Transcriptoma
8.
Brain ; 140(4): 967-980, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334918

RESUMO

One major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells. Therefore, we developed a new paradigm by grafting healthy donor or multiple sclerosis patient lymphocytes in the demyelinated lesion of nude mice spinal cord. We show that lymphocytes play a major role in remyelination whose efficacy is significantly decreased in mice grafted with multiple sclerosis lymphocytes compared to those grafted with healthy donors lymphocytes. Mechanistically, we demonstrated in vitro that lymphocyte-derived mediators influenced differentiation of oligodendrocyte precursor cells through a crosstalk with microglial cells. Among mice grafted with lymphocytes from different patients, we observed diverse remyelination patterns reproducing for the first time the heterogeneity observed in multiple sclerosis patients. Comparing lymphocyte secretory profile from patients exhibiting high and low remyelination ability, we identified novel molecules involved in oligodendrocyte precursor cell differentiation and validated CCL19 as a target to improve remyelination. Specifically, exogenous CCL19 abolished oligodendrocyte precursor cell differentiation observed in patients with high remyelination pattern. Multiple sclerosis lymphocytes exhibit intrinsic capacities to coordinate myelin repair and further investigation on patients with high remyelination capacities will provide new pro-regenerative strategies.


Assuntos
Imunidade Adaptativa/fisiologia , Doenças Desmielinizantes/imunologia , Bainha de Mielina/imunologia , Adolescente , Adulto , Idoso , Animais , Transplante de Células , Quimiocina CCL19/imunologia , Feminino , Humanos , Linfócitos/imunologia , Lisofosfatidilcolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Células-Tronco Neurais/imunologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Adulto Jovem
9.
Neurobiol Dis ; 98: 137-148, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940202

RESUMO

Oligodendrocyte and myelin deficits have been reported in mental/psychiatric diseases. The p21-activated kinase 3 (PAK3), a serine/threonine kinase, whose activity is stimulated by the binding of active Rac and Cdc42 GTPases is affected in these pathologies. Indeed, many mutations of Pak3 gene have been described in non-syndromic intellectual disability diseases. Pak3 is expressed mainly in the brain where its role has been investigated in neurons but not in glial cells. Here, we showed that PAK3 is highly expressed in oligodendrocyte precursors (OPCs) and its expression decreases in mature oligodendrocytes. In the developing white matter of the Pak3 knockout mice, we found defects of oligodendrocyte differentiation in the corpus callosum and to a lesser extent in the anterior commissure, which were compensated at the adult stage. In vitro experiments in OPC cultures, derived from Pak3 knockout and wild type brains, support a developmental and cell-autonomous role for PAK3 in regulating OPC differentiation into mature oligodendrocytes. Moreover, we did not detect any obvious alterations of the proliferation or migration of Pak3 null OPCs compared to wild type. Overall, our data highlight PAK3 as a new regulator of OPC differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Comissura Anterior/citologia , Comissura Anterior/crescimento & desenvolvimento , Comissura Anterior/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/metabolismo , Masculino , Camundongos Knockout , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Substância Branca/citologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/metabolismo , Quinases Ativadas por p21/genética
10.
Stem Cells ; 34(4): 984-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676415

RESUMO

Pelizaeus-Merzbacher disease (PMD) results from an X-linked misexpression of proteolipid protein 1 (PLP1). This leukodystrophy causes severe hypomyelination with progressive inflammation, leading to neurological dysfunctions and shortened life expectancy. While no cure exists for PMD, experimental cell-based therapy in the dysmyelinated shiverer model suggested that human oligodendrocyte progenitor cells (hOPCs) or human neural precursor cells (hNPCs) are promising candidates to treat myelinopathies. However, the fate and restorative advantages of human NPCs/OPCs in a relevant model of PMD has not yet been addressed. Using a model of Plp1 overexpression, resulting in demyelination with progressive inflammation, we compared side-by-side the therapeutic benefits of intracerebrally grafted hNPCs and hOPCs. Our findings reveal equal integration of the donor cells within presumptive white matter tracks. While the onset of exogenous remyelination was earlier in hOPCs-grafted mice than in hNPC-grafted mice, extended lifespan occurred only in hNPCs-grafted animals. This improved survival was correlated with reduced neuroinflammation (microglial and astrocytosis loads) and microglia polarization toward M2-like phenotype followed by remyelination. Thus modulation of neuroinflammation combined with myelin restoration is crucial to prevent PMD pathology progression and ensure successful rescue of PMD mice. These findings should help to design novel therapeutic strategies combining immunomodulation and stem/progenitor cell-based therapy for disorders associating hypomyelination with inflammation as observed in PMD.


Assuntos
Imunidade Inata , Inflamação/terapia , Células-Tronco Neurais/transplante , Oligodendroglia/transplante , Doença de Pelizaeus-Merzbacher/terapia , Animais , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunomodulação , Inflamação/imunologia , Inflamação/patologia , Camundongos , Microglia/imunologia , Microglia/patologia , Proteína Proteolipídica de Mielina/biossíntese , Bainha de Mielina/metabolismo , Células-Tronco Neurais/imunologia , Oligodendroglia/imunologia , Doença de Pelizaeus-Merzbacher/imunologia , Doença de Pelizaeus-Merzbacher/patologia , Regeneração
11.
Stem Cells ; 33(6): 2011-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25786382

RESUMO

It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine.


Assuntos
Diferenciação Celular/fisiologia , Doenças Desmielinizantes/patologia , Gânglios Espinais/citologia , Bainha de Mielina/metabolismo , Pericitos/citologia , Células de Schwann/citologia , Células-Tronco Adultas/citologia , Animais , Células Cultivadas , Doenças Desmielinizantes/terapia , Gânglios Espinais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Regeneração Nervosa/fisiologia , Crista Neural/citologia , Neurônios/citologia
12.
Brain ; 138(Pt 1): 120-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25564492

RESUMO

The basic helix-loop-helix transcription factor Olig2 is a key determinant for the specification of neural precursor cells into oligodendrocyte progenitor cells. However, the functional role of Olig2 in oligodendrocyte migration and differentiation remains elusive both during developmental myelination and under demyelinating conditions of the adult central nervous system. To decipher Olig2 functions, we generated transgenic mice (TetOlig2:Sox10(rtTA/+)) overexpressing Olig2 in Sox10(+) oligodendroglial cells in a doxycycline inducible manner. We show that Olig2 overexpression increases the generation of differentiated oligodendrocytes, leading to precocious myelination of the central nervous system. Unexpectedly, we found that gain of Olig2 function in oligodendrocyte progenitor cells enhances their migration rate. To determine whether Olig2 overexpression in adult oligodendrocyte progenitor cells promotes oligodendrocyte regeneration for myelin repair, we induced lysophosphatidylcholine demyelination in the corpus callosum of TetOlig2:Sox10(rtTA/+) and control mice. We found that Olig2 overexpression enhanced oligodendrocyte progenitor cell differentiation and remyelination. To assess the relevance of these findings in demyelinating diseases, we also examined OLIG2 expression in multiple sclerosis lesions. We demonstrate that OLIG2 displays a differential expression pattern in multiple sclerosis lesions that correlates with lesion activity. Strikingly, OLIG2 was predominantly detected in NOGO-A(+) (now known as RTN4-A) maturing oligodendrocytes, which prevailed in active lesion borders, rather than chronic silent and shadow plaques. Taken together, our data provide proof of principle indicating that OLIG2 overexpression in oligodendrocyte progenitor cells might be a possible therapeutic mechanism for enhancing myelin repair.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/fisiologia , Regeneração/genética , Medula Espinal/citologia , Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Doxiciclina/farmacologia , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Lisofosfatidilcolinas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/patologia , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/patologia , Oligodendroglia/ultraestrutura , Regeneração/efeitos dos fármacos , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Medula Espinal/patologia
13.
Proc Natl Acad Sci U S A ; 108(26): 10714-9, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670295

RESUMO

Boundary cap cells (BC), which express the transcription factor Krox20, participate in the formation of the boundary between the central nervous system and the peripheral nervous system. To study BC stemness, we developed a method to purify and amplify BC in vitro from Krox20(Cre/+), R26R(YFP/+) mouse embryos. We show that BC progeny are EGF/FGF2-responsive, form spheres, and express neural crest markers. Upon growth factor withdrawal, BC progeny gave rise to multiple neural crest and CNS lineages. Transplanted into the developing murine forebrain, they successfully survived, migrated, and integrated within the host environment. Surprisingly, BC progeny generated exclusively CNS cells, including neurons, astrocytes, and myelin-forming oligodendrocytes. In vitro experiments indicated that a sequential combination of ventralizing morphogens and glial growth factors was necessary to reprogram BC into oligodendrocytes. Thus, BC progeny are endowed with differentiation plasticity beyond the peripheral nervous system. The demonstration that CNS developmental cues can reprogram neural crest-derived stem cells into CNS derivatives suggests that BC could serve as a source of cell type-specific lineages, including oligodendrocytes, for cell-based therapies to treat CNS disorders.


Assuntos
Diferenciação Celular , Sistema Nervoso Periférico/citologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Movimento Celular , Células Cultivadas , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Oligodendroglia/metabolismo
14.
Stem Cell Reports ; 17(11): 2467-2483, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351367

RESUMO

The presence of putative stem/progenitor cells has been suggested in adult peripheral nervous system (PNS) tissue, including the dorsal root ganglion (DRG). To date, their identification and fate in pathophysiological conditions have not been addressed. Combining multiple in vitro and in vivo approaches, we identified the presence of stem cells in the adult DRG satellite glial population, and progenitors were present in the DRGs and sciatic nerve. Cell-specific transgenic mouse lines highlighted the proliferative potential of DRG stem cells and progenitors in vitro. DRG stem cells had gliogenic and neurogenic potentials, whereas progenitors were essentially gliogenic. Lineage tracing showed that, under physiological conditions, adult DRG stem cells maintained DRG homeostasis by supplying satellite glia. Under pathological conditions, adult DRG stem cells replaced DRG neurons lost to injury in addition of renewing the satellite glial pool. These novel findings open new avenues for development of therapeutic strategies targeting DRG stem cells for PNS disorders.


Assuntos
Células-Tronco Adultas , Gânglios Espinais , Camundongos , Animais , Neuroglia , Neurônios , Células-Tronco
15.
Artigo em Inglês | MEDLINE | ID: mdl-34642237

RESUMO

BACKGROUND AND OBJECTIVES: To test whether low concentrations of teriflunomide (TF) could promote remyelination, we investigate the effect of TF on oligodendrocyte in culture and on remyelination in vivo in 2 demyelinating models. METHODS: The effect of TF on oligodendrocyte precursor cell (OPC) proliferation and differentiation was assessed in vitro in glial cultures derived from neonatal mice and confirmed on fluorescence-activated cell sorting-sorted adult OPCs. The levels of the 8,9-unsaturated sterols lanosterol and zymosterol were quantified in TF- and sham-treated cultures. In vivo, TF was administered orally, and remyelination was assessed both in myelin basic protein-GFP-nitroreductase (Mbp:GFP-NTR) transgenic Xenopus laevis demyelinated by metronidazole and in adult mice demyelinated by lysolecithin. RESULTS: In cultures, low concentrations of TF down to 10 nM decreased OPC proliferation and increased their differentiation, an effect that was also detected on adult OPCs. Oligodendrocyte differentiation induced by TF was abrogated by the oxidosqualene cyclase inhibitor Ro 48-8071 and was mediated by the accumulation of zymosterol. In the demyelinated tadpole, TF enhanced the regeneration of mature oligodendrocytes up to 2.5-fold. In the mouse demyelinated spinal cord, TF promoted the differentiation of newly generated oligodendrocytes by a factor of 1.7-fold and significantly increased remyelination. DISCUSSION: TF enhances zymosterol accumulation in oligodendrocytes and CNS myelin repair, a beneficial off-target effect that should be investigated in patients with multiple sclerosis.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Colesterol/metabolismo , Crotonatos/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Hidroxibutiratos/farmacologia , Imunossupressores/farmacologia , Nitrilas/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Toluidinas/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Doenças do Sistema Nervoso Central/metabolismo , Crotonatos/administração & dosagem , Modelos Animais de Doenças , Hidroxibutiratos/administração & dosagem , Imunossupressores/administração & dosagem , Larva , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nitrilas/administração & dosagem , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Toluidinas/administração & dosagem , Xenopus laevis
16.
Neuroscientist ; 13(4): 383-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17644768

RESUMO

The loss of myelin, a major element involved in the saltatory conduction of the electrical impulse of the nervous system, is a major target of current research. Serious long-term disabilities are observed in patients with demyelinating disease of the central nervous system, such as multiple sclerosis. New therapeutic strategies aimed at overcoming myelin damage and axonal loss focus on the repair potential of myelin-forming cells. This review examines the use of peripheral myelin-forming cells, the Schwann cells, to promote myelin repair.


Assuntos
Sistema Nervoso Central/fisiologia , Bainha de Mielina/metabolismo , Nervos Periféricos/fisiologia , Regeneração/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/história , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , História do Século XIX , História do Século XX , História do Século XXI , Humanos
17.
J Neurosci ; 25(35): 7924-33, 2005 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16135749

RESUMO

Experimental studies provided overwhelming proof that transplants of myelin-forming cells achieve efficient remyelination in the CNS. Among cellular candidates, Schwann cells can be used for autologous transplantation to ensure robust remyelination of lesions and to deliver therapeutic factors in the CNS. In the present study, macaque Schwann cells expressing green fluorescent protein (GFP) were infected with human immunodeficiency virus-derived vectors overexpressing brain-derived neurotrophic factor (BDNF) or Neurotrophin 3 (NT-3), two neurotrophins that also modulate glial cell biology. The ability of transgenic Schwann cells to secrete growth factors was assessed by ELISA and showed 35- and 62-fold increases in BDNF and NT-3, respectively, in transduced macaque Schwann cell supernatants. Conditioned media of BDNF- and NT-3-transduced Schwann cells reduced Schwann cell proliferation and favored their differentiation in vitro. Transgenic cells were grafted in demyelinated spinal cords of adult nude mice. Two behavioral assays showed that NT-3- and BDNF-transduced Schwann cells promoted faster and stronger functional recovery than GFP-transduced Schwann cells. Morphological analysis indicated that functional recovery correlated with enhanced proliferation and differentiation of resident oligodendrocyte progenitors and enhanced oligodendrocyte and Schwann cell differentiation. Moreover, NT-3-transduced Schwann cells provided neuroprotection and reduced astrogliosis. These results underline the potential therapeutic benefit of combining neuroprotection and activation of myelin-forming cells to restore altered functions in demyelinating diseases of the CNS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Neurotrofina 3/metabolismo , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/transplante , Medula Espinal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Transplante de Células/métodos , Células Cultivadas , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/cirurgia , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Nus , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Neurotrofina 3/genética , Células de Schwann/metabolismo , Medula Espinal/patologia , Medula Espinal/transplante , Transdução Genética/métodos , Transplantes
18.
Brain ; 128(Pt 3): 540-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15689363

RESUMO

Experimental transplantation in rodent models of CNS demyelination has led to the idea that Schwann cells may be candidates for cell therapy in human myelin diseases. Here we investigated the ability of Schwann cells autografts to generate myelin in the demyelinated monkey spinal cord. We report that monkey Schwann cells derived from adult peripheral nerve biopsies retain, after growth factor expansion and transduction with a lentiviral vector encoding green fluorescent protein, the ability to differentiate in vitro into promyelinating cells. When transplanted in the demyelinated nude mouse spinal cord, they promoted functional and anatomical repair of the lesions (n = 12). Furthermore, we obtained evidence by immunohistochemistry (n = 2) and electron microscopy (n = 4) that autologous transplantation of expanded monkey Schwann cells in acute lesions of the monkey spinal cord results in the repair of large areas of demyelination; up to 55% of the axons were remyelinated by donor Schwann cells, the remaining ones being remyelinated by oligodendrocytes. Autologous grafts of Schwann cells may thus be of therapeutic value for myelin repair in the adult CNS.


Assuntos
Doenças Desmielinizantes/terapia , Bainha de Mielina/fisiologia , Regeneração Nervosa , Células de Schwann/transplante , Doenças da Medula Espinal/terapia , Animais , Diferenciação Celular , Divisão Celular , Células Cultivadas , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos , HIV/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos Nus , Bainha de Mielina/ultraestrutura , Células de Schwann/virologia , Medula Espinal/ultraestrutura , Doenças da Medula Espinal/patologia , Transdução Genética
19.
Brain Pathol ; 15(3): 198-207, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16196386

RESUMO

The mechanisms limiting myelin repair in human central nervous system (CNS) remain unknown. Models of induced-demyelination in the nonhuman primate CNS may provide the necessary grounds to unravel these mechanisms and to investigate the development of strategies to promote myelin repair. To address this issue, we developed a model of focal demyelination in the adult Macaca fascicularis CNS. Lesions were induced by microinjection of lysolecithin in the optic nerve and the profile of remyelination was compared to that of lysolecithin-induced lesions of the spinal cord. In both structures, the time-course of demyelination as well as the onset of remyelination were found to be similar to that in the rodent CNS. While spinal cord lesions were remyelinated within 6 weeks, optic nerve lesions remained demyelinated for up to 3 months post-injection. The failure of remyelination in the optic nerve correlated with a reduced density of NG2+ oligodendrocyte progenitor cells, the presence of oligodendrocytes that fail to ensheath naked axons in the lesion and the absence of astrocyte recruitment in the lesion compared with spinal cord lesions. Our present data suggest that the reduced oligodendrocyte progenitor population, the improper activation of oligodendrocytes at the onset of remyelination in the optic nerve, and possibly, the involvement of astrocytes contribute to the chronicity of the optic nerve lesion. This model of chronic demyelination in the macaque optic nerve stresses its pertinence to unraveling the mechanisms limiting remyelination in multiple sclerosis.


Assuntos
Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Regeneração Nervosa/fisiologia , Doenças do Nervo Óptico/patologia , Animais , Astrócitos/citologia , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Lisofosfatidilcolinas/toxicidade , Macaca fascicularis , Microscopia Eletrônica de Transmissão , Esclerose Múltipla/patologia , Bainha de Mielina/ultraestrutura , Oligodendroglia/citologia , Oligodendroglia/ultraestrutura , Doenças do Nervo Óptico/induzido quimicamente , Doenças da Medula Espinal/induzido quimicamente , Doenças da Medula Espinal/patologia , Células-Tronco/citologia
20.
Neuroreport ; 16(16): 1757-62, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16237322

RESUMO

Adult macaque Schwann cells were infected using adeno-associated virus type-2-derived vectors expressing the green fluorescent protein reporter gene under the control of the cytomegalovirus, the hybrid cytomegalovirus-betaactin, the myelin basic protein or the tetracycline-inducible promoters. On the basis of green fluorescent protein expression, gene transfer efficiency was compared in resting and dividing conditions following or not following hydroxyurea or etoposide treatment. Hydroxyurea allowed promoter-dependent expression of green fluorescent protein in infected Schwann cells. Etoposide treatment led to a high percentage of green fluorescent protein expressing cells (over 50%) with all promoters tested. When infected cells were grafted into demyelinated nude mice spinal cord, green fluorescent protein expression was only observed with the cytomegalovirus-betaactin and tetracycline-inducible promoters. In addition, adeno-associated virus type-2 infection reduced the grafted cell survival but increased their differentiation.


Assuntos
Dependovirus/fisiologia , Regulação da Expressão Gênica/fisiologia , Células de Schwann/virologia , Transdução Genética , Análise de Variância , Animais , Contagem de Células/métodos , Proliferação de Células/efeitos dos fármacos , Transplante de Células/métodos , Células Cultivadas , Citomegalovirus/fisiologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/cirurgia , Etoposídeo/farmacologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hidroxiureia/farmacologia , Imuno-Histoquímica/métodos , Macaca fascicularis , Camundongos , Proteína Básica da Mielina/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Células de Schwann/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA