RESUMO
Our earlier research showed that an interspecific tobacco hybrid (Nicotiana edwardsonii 'Columbia' [NEC]) displays elevated levels of salicylic acid (SA) and enhanced resistance to localized necrotic symptoms (hypersensitive response [HR]) caused by tobacco mosaic virus (TMV) and tobacco necrosis virus (TNV), as compared with another interspecific hybrid (Nicotiana edwardsonii [NE]) derived from the same parents. In the present study, we investigated whether symptomatic resistance in NEC is indeed associated with the inhibition of TMV and TNV and whether SA plays a role in this process. We demonstrated that enhanced viral resistance in NEC is manifested as both milder local necrotic (HR) symptoms and reduced levels of TMV and TNV. The presence of an adequate amount of SA contributes to the enhanced defense response of NEC to TMV and TNV, as the absence of SA resulted in seriously impaired viral resistance. Elevated levels of subcellular tripeptide glutathione (GSH) in NEC plants in response to viral infection suggest that in addition to SA, GSH may also contribute to the elevated viral resistance of NEC. Furthermore, we found that NEC displays an enhanced resistance not only to viral pathogens but also to bacterial infections and abiotic oxidative stress induced by paraquat treatments. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Ácido Salicílico , Vírus do Mosaico do Tabaco , Ácido Salicílico/farmacologia , Nicotiana , Proteínas de Plantas , Plantas , Vírus do Mosaico do Tabaco/fisiologia , Glutationa , Bactérias , Estresse Fisiológico , Doenças das PlantasRESUMO
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
RESUMO
Pretreatment of tobacco leaves with low concentrations (5 to 10 mM) of H2O2 suppressed hypersensitive-type necrosis associated with resistance to Tobacco mosaic virus (TMV) or Pseudomonas syringae pv. phaseolicola. The same pretreatment resulted in suppression of normosensitive necrosis associated with susceptibility to Botrytis cinerea. This type of H2O2-mediated, induced disease symptom resistance correlated with enhanced host antioxidant capacity, i.e., elevated enzymatic activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (POX) after viral and bacterial infections. Induction of genes that encode the antioxidants superoxide dismutase (SOD), CAT, and APX was also enhanced early after TMV infection. Artificial application of SOD and CAT suppressed necroses caused by viral, bacterial, or fungal pathogens similarly as H2O2 pretreatment, implying that H2O2-mediated symptom resistance operates through enhancement of plant antioxidant capacity. Pathogen multiplication was not significantly affected in H2O2-pretreated plants. Salicylic acid (SA), a central component of plant defense, does not seem to function in this type of H2O2-mediated symptom resistance, indicated by unchanged levels of free and bound SA and a lack of early up-regulation of an SA glucosyltransferase gene in TMV-infected H2O2-pretreated tobacco. Taken together, H2O2-mediated, induced resistance to necrotic symptoms in tobacco seems to depend on enhanced antioxidant capacity.
Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Regulação para Cima , Regulação Enzimológica da Expressão Gênica , Doenças das Plantas/virologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas/classificação , RNA de Plantas/metabolismo , Nicotiana/genética , Vírus do Mosaico do TabacoRESUMO
Barley cultivation is adversely affected by high-temperature stress, which may modulate plant defense responses to pathogens such as barley powdery mildew (Blumeria graminis f. sp. hordei, Bgh). Earlier research focused mainly on the influence of short-term heat stress (heat shock) of barley on Bgh infection. In this study, our aim was to investigate the effects of both short- and long-term heat stress (35 °C from 30 s to 5 days) on Bgh infection in the barley cultivar Ingrid and its near-isogenic lines containing different powdery mildew resistance genes (Mla12, Mlg, and mlo5) by analyzing symptom severity and Bgh biomass with RT-qPCR. The expression of selected barley defense genes (BAX inhibitor-1, Pathogenesis- related protein-1b, Respiratory burst oxidase homologue F2, and Heat shock protein 90-1) was also monitored in plants previously exposed to heat stress followed by inoculation with Bgh. We demonstrated that pre-exposure to short- and long-term heat stress negatively affects the resistance of all resistant lines manifested by the appearance of powdery mildew symptoms and increased Bgh biomass. Furthermore, prolonged heat stress (48 and 120 h) enhanced both Bgh symptoms and biomass in susceptible wild-type Ingrid. Heat stress suppressed and delayed early defense gene activation in resistant lines, which is a possible reason why resistant barley became partially susceptible to Bgh.
RESUMO
Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O2.-) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49⯰C, 45â¯s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance.