Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 486: 116917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555004

RESUMO

Indole-3-acetic acid (IAA) is the most widely utilized plant growth regulator. Despite its extensive usage, IAA is often overlooked as an environmental pollutant. Due to its protein-binding nature, it also functions as a uremic toxin, contributing to its association with chronic kidney disease (CKD). While in vitro and epidemiological research have demonstrated this association, the precise impact of IAA on cardiovascular disease in animal models is unknown. The main objective of this study is to conduct a mechanistic analysis of the cardiotoxic effects caused by IAA using male Wistar albino rats as the experimental model. Three different concentrations of IAA (125, 250, 500 mg/kg) were administered for 28 days. The circulating IAA concentration mimicked previously observed levels in CKD patients. The administration of IAA led to a notable augmentation in heart size and heart-to-body weight ratio, indicating cardiac hypertrophy. Echocardiographic assessments supported these observations, revealing myocardial thickening. Biochemical and gene expression analyses further corroborated the cardiotoxic effects of IAA. Dyslipidemia, increased serum c-Troponin-I levels, decreased SOD and CAT levels, and elevated lipid peroxidation in cardiac tissue were identified. Moreover, increased expression of cardiac inflammatory biomarkers, including ANP, BNP, ß-MHC, Col-III, TNF-α, and NF-κB, was also found in the IAA-treated animals. Histopathological analysis confirmed the cardiotoxic nature of IAA, providing additional evidence of its adverse effects on cardiovascular health. These results offer insights into the potential negative impact of IAA on cardiovascular function, and elucidating the underlying mechanisms of its cardiotoxicity.


Assuntos
Cardiomegalia , Ácidos Indolacéticos , Ratos Wistar , Animais , Masculino , Ratos , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Biomarcadores/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Cardiotoxicidade
2.
J Fluoresc ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722499

RESUMO

A novel colorimetric and fluorogenic probe L based on hydrazine carbothioamide and 1,8-naphthalimide moieties has been designed and synthesized for the hypersensitive detection of Hg2+ or Ag+ ions. The observed probe L showed colorimetric and fluorometric responses for these studies when Hg2+ or Ag+ was added to the DMSO - HEPES buffer solution (pH = 7). An interference test with other metal ions was determined, and the high selectivity of Hg2+ and Ag+ did not interfere with other metal ions in colorimetric and fluorogenic methods. The possible mechanism of binding of these metal ions and the probe L 1:1 complex was determined by H1 NMR. Additionally, the reversibility of the affinity of probe L with mercury (Hg2+) and silver (Ag+) ions was investigated by adding Na2EDTA. The naked eye detected the "Off-On" type fluorescence sensor in the presence of Hg2+ and EDTA. The tested test strip kits provided a strong probability of probe L with high response and rapid, sensitive detection with Hg2+ ion, which may be suitable for practical use.

3.
J Biochem Mol Toxicol ; 38(1): e23520, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37632306

RESUMO

Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in ß-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in ß-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident ß-cell damage. However, the pretreatment with morin showed promising effects by promoting ß-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced ß-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic ß-cells.


Assuntos
Flavonas , Insulina , Parabenos , Peixe-Zebra , Animais , Humanos , Larva , Antioxidantes/farmacologia , Estresse Oxidativo , Flavonoides/farmacologia , Flavonoides/uso terapêutico
4.
Pestic Biochem Physiol ; 198: 105715, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225072

RESUMO

Paraquat (PQ) is a ubiquitous and water-soluble herbicide which has potential to cause systematic poisoning. PQ intoxication is known to be associated with various clinical complications including hepatotoxicity. Amentoflavone (AMF) is an active phenolic compound that exhibits a broad range of biological as well as pharmacological activities. This study was designed to determine the hepato-protective potential of AMF against PQ instigated hepatotoxicity in rats. Forty-eight rats were distributed into four groups such as control group, PQ-treated group (5 mg/kg), PQ (5 mg/kg) + AMF (40 mg/kg) exposed group and AMF (40 mg/kg) only supplemented group. It was revealed that PQ exposure reduced nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidative genes expression whereas increase the expression of Kelch-like ECH-associated protein 1(Keap1). Besides, PQ intoxication reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR), glutathione peroxidase (GPx), Heme- oxygenase-1 (HO-1) & glutathione (GSH) content. Furthermore, the levels of reactive oxygen species (ROS) & malondialdehyde (MDA) were increased. In addition, PQ significantly increased the hepatic serum enzymes including alkaline phosphatase (ALP), aspartate transaminase (AST), & alanine transaminase (ALT) along with inflammatory biomarkers levels such as tumor necrosis- α (TNF- α), nuclear factor- κB (NF-κB), interleukin-6 (IL-6), interleukin 1beta (IL-1ß), & cyclo­oxygenase-2 (COX-2) activity. PQ intoxication increased the expressions of pro-apoptotic markers i.e., Bcl-2-associated X protein (Bax) & Cysteine-aspartic protease-3 (Caspase-3) while reducing the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Furthermore, PQ intoxication prompted various histopathological impairments. However, the co-administration of AMF significantly improved the abovementioned hepatic damages induced by PQ. The present study indicated that AMF may be an effective therapeutic candidate to mitigate PQ provoked hepatic impairments due to its anti-apoptotic, antioxidant & anti-inflammatory properties.


Assuntos
Biflavonoides , Doença Hepática Induzida por Substâncias e Drogas , Paraquat , Ratos , Animais , Paraquat/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
5.
Drug Chem Toxicol ; : 1-16, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910278

RESUMO

The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.

6.
Microb Pathog ; 180: 106123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088400

RESUMO

Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1ß, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.


Assuntos
Infecções por Pseudomonas , Fatores de Virulência , Animais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Luteolina/farmacologia , Peixe-Zebra , Percepção de Quorum , Inflamação , Superóxido Dismutase/metabolismo , Antibacterianos/metabolismo , Biofilmes , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
7.
Microb Pathog ; 184: 106387, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821050

RESUMO

Bacteria communicate with each other through contact-dependent and contact-independent mechanisms. While certain contact-dependent mechanisms, such as Type IV and Type VI, have received considerable attention, nanotubes-mediated communication among gut bacteria remains largely unknown. The purpose of this study is to demonstrate the presence of nanotube production in both gut commensal and gut pathogenic bacteria. And also aims to show how Enterococcus faecalis utilizes nanotubes to combat Salmonella ser. Typhi (S. Typhi), a pathogen in the gut. The research findings suggest that the formation of nanotubes is an inherent trait observed in both Gram-positive and Gram-negative bacteria. Interestingly, bacteria generate nanotubes in dynamic environments, biofilms, and even within the gut of zebrafish. These nanotubes develops over time in accordance with the duration of incubation. Furthermore, E. faecalis effectively combats S. Typhi through mechanisms that depend on physical contact rather than indirect methods. Notably, E. faecalis protects zebrafish larvae from S. Typhi infections by reducing reactive oxygen species and cell death, and concurrently boosting the production of antioxidant enzymes. It is hypothesized that E. faecalis might eliminate S. Typhi by transferring toxic metabolites into the pathogen via nanotubes. Gene expression analysis highlights that proinflammatory markers such as TNF-α, IL-1ß, and IL-6 are elevated in Salmonella-infected larvae. However, co-treatment with E. faecalis counters this effect. Findings of this study underscores the significance of nanotubes as a vital machinery for bacterial communication and distribution of virulence factors. Exploring nanotubes-mediated communication at a molecular level could pave the way for innovative therapeutic interventions.


Assuntos
Enterococcus faecalis , Peixe-Zebra , Animais , Bactérias , Enterococcus faecalis/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Salmonella typhi
8.
Mol Biol Rep ; 51(1): 27, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133875

RESUMO

BACKGROUND: Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles. METHODS AND RESULTS: Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity. CONCLUSIONS: In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Humanos , Luteolina/farmacologia , Polietilenotereftalatos/farmacologia , Nanopartículas/toxicidade , Estresse Oxidativo , Encéfalo
9.
J Toxicol Environ Health A ; 86(19): 720-734, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37609830

RESUMO

Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1ß and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.


Assuntos
Luteolina , Raios Ultravioleta , Adulto , Animais , Humanos , Raios Ultravioleta/efeitos adversos , Luteolina/farmacologia , Espécies Reativas de Oxigênio , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Citocinas , Glutationa , Larva
10.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764521

RESUMO

Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.


Assuntos
Aphanomyces , Animais , Aphanomyces/genética , Peixe-Zebra , Fungos , Peptídeos , Fatores de Virulência
11.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513223

RESUMO

Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.


Assuntos
Retinopatia Diabética , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Retinopatia Diabética/metabolismo , Estresse Oxidativo , Glucose/farmacologia
12.
Medicina (Kaunas) ; 59(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241227

RESUMO

Background and Objectives: Colon cancer (CC) is the second most common cancer in Saudi Arabia, and the number of new cases is expected to increase by 40% by 2040. Sixty percent of patients with CC are diagnosed in the late stage, causing a reduced survival rate. Thus, identifying a new biomarker could contribute to diagnosing CC in the early stages, leading to delivering better therapy and increasing the survival rate. Materials and Methods: HSPB6 expression was investigated in extracted RNA taken from 10 patients with CC and their adjacent normal tissues, as well as in DMH-induced CC and a colon treated with saline taken from a male Wistar rat. Additionally, the DNA of the LoVo and Caco-2 cell lines was collected, and bisulfite was converted to measure the DNA methylation level. This was followed by applying 5-aza-2'-deoxycytidine (AZA) to the LoVo and Caco-2 cell lines for 72 h to see the effect of DNA methylation on HSPB6 expression. Finally, the GeneMANIA database was used to find the interacted genes at transcriptional and translational levels with HSPB6. Results: We found that the expression of HSPB6 was downregulated in 10 CC tissues compared to their adjacent normal colon tissues, as well as in the in vivo study, where its expression was lower in the colon treated with the DMH agent compared to the colon treated with saline. This suggests the possible role of HSPB6 in tumor progression. Moreover, HSPB6 was methylated in two CC cell lines (LoVo and Caco-2), and demethylation with AZA elevated its expression, implying a mechanistic association between DNA methylation and HSPB6 expression. Conclusions: Our findings indicate that HSPB6 is adversely expressed with tumor progression, and its expression may be controlled by DNA methylation. Thus, HSPB6 could be a good biomarker employed in the CC diagnostic process.


Assuntos
Neoplasias do Colo , Humanos , Ratos , Animais , Masculino , Decitabina/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Ratos Wistar , Neoplasias do Colo/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP20/genética
13.
Medicina (Kaunas) ; 59(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241221

RESUMO

Background and Objectives: Colon cancer (CC) has a high mortality rate and is often diagnosed at an advanced stage in Saudi Arabia. Thus, the identification and characterization of potential new cancer-specific biomarkers are imperative for improving the diagnosis of CC by detecting it at an early stage. Cancer-testis (CT) genes have been identified as potential biomarkers for the early diagnosis of various cancers. Among the CT genes are those belonging to the SSX family. In order to assess the usefulness of SSX family genes as cancer biomarkers for the detection of early-stage CC, the goal of this research was to validate the expressions of these genes in patients with CC and in matched patients with normal colons (NCs). Materials and Methods: RT-PCR assays were used to analyze the SSX1, SSX2, and SSX3 family gene expression levels in 30 neighboring NC and CC tissue samples from male Saudi patients. Epigenetic alterations were also tested in vitro using qRT-PCR analysis to determine whether reduced DNA methyltransferase or histone deacetylation could stimulate SSX gene expression via 5-aza-2'-deoxycytidine and trichostatin treatments, respectively. Results: The RT-PCR results showed SSX1 and SSX2 gene expression in 10% and 20% of the CC tissue specimens, respectively, but not in any of the NC tissue specimens. However, no SSX3 expression was detected in any of the examined CC or NC tissue samples. In addition, the qRT-PCR results showed significantly higher SSX1 and SSX2 expression levels in the CC tissue samples than in the NC tissue samples. The 5-aza-2'-deoxycytidine and trichostatin treatments significantly induced the mRNA expression levels of the SSX1, SSX2, and SSX3 genes in the CC cells in vitro. Conclusions: These findings suggest that SSX1 and SSX2 are potentially suitable candidate biomarkers for CC. Their expressions can be regulated via hypomethylating and histone deacetylase treatments, subsequently providing a potential therapeutic target for CC.


Assuntos
Neoplasias do Colo , Neoplasias Testiculares , Humanos , Masculino , Histonas/genética , Metilação , Decitabina/farmacologia , Decitabina/uso terapêutico , Reação em Cadeia da Polimerase , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Proteínas de Fusão Oncogênica/genética
14.
Mol Cell Biochem ; 477(10): 2387-2401, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35575874

RESUMO

Alcoholic liver disease is one of the most prominent liver diseases in the world. Lipid accumulation accompanied by oxidative stress and inflammation in the liver is the most important pathogenesis of ALD. This study was designed to investigate the anti-oxidative, fat metabolism-regulating, and anti-inflammatory potential of N2, a seminatural analog of Nimbin. The ethanol exposure was found to induce liver injury on zebrafish larvae, such as liver inflammation, lipid accumulation, oxidative stress, and hepatocytes apoptosis. N2 was subjected to ADMET screening in-silico, and it was observed N2's co-exposure decreased the ROS, apoptosis, lipid peroxidation, and macrophage accumulation in the liver of larval zebrafish. To further study the mechanism behind ethanol hepatotoxicity and the hepatoprotective behavior of N2, gene expression changes were determined in zebrafish. The results of this study revealed that ethanol exposure upregulated mRNA expressions of SREBP1, C/EBP-α, FAS and provoked more severe oxidative stress and hepatitis via upregulation of inflammatory cytokines TNF-α, IL-10, IL-1ß, iNOS, COX-2. However, the N2 co-exposure protected the hepatocyte damage and almost reversed the condition by downregulating the mRNA levels. The study suggested that N2 could be an effective therapeutic agent for the treatment of ALD and other inflammatory conditions.


Assuntos
Hepatopatias Alcoólicas , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Etanol/toxicidade , Inflamação/metabolismo , Interleucina-10/metabolismo , Larva/metabolismo , Limoninas , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/genética
15.
Mol Biol Rep ; 49(12): 11867-11879, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36224446

RESUMO

BACKGROUND: Pancreatic ß-cells are susceptible to oxidative stress, leading to ß-cell death and dysfunction due to enhanced ROS levels and type 2 diabetes. To inhibit the ß-cells damages induced by the oxidative stress, the present study investigates the beneficial effect of various peptides (WL15, RF13, RW20, IW13 and MF18) of immune related proteins (cysteine and glycine-rich protein 2, histone acetyltransferase, vacuolar protein sorting associated protein 26B, serine threonine-protein kinase and CxxC zinc finger protein, respectively). Also, the molecular mechanism of WL15 from cysteine and glycine-rich protein 2 on ß-cell regeneration was identified through PEPCK and insulin pathway. MATERIALS AND METHODS: In this study, a total of five peptides including WL15, RF13, RW20, IW13, and MF18 were derived from immune-related proteins such as cysteine and glycine-rich protein 2, histone acetyltransferase, vacuolar protein sorting associated protein 26B, serine threonine-protein kinase and CxxC zinc finger protein, respectively. These protein sequences were obtained from an earlier constructed transcriptome database of a teleost Channa striatus. The identified peptides were evaluated for their antioxidant as well as antidiabetic activity. Based on the in silico analysis and in-vitro screening experiments, WL15 was predicted to have better antioxidant and antidiabetic activity among the five different peptides. Therefore, WL15 alone was further analyzed for apoptosis, antioxidant capacity, glucose metabolism, and gene expression performance, which was investigated on the alloxan (500 µM) induced zebrafish in vivo larval model. RESULTS: The results showed alloxan exposure to zebrafish larvae for a day, the ROS was generated in the ß-cells. Interestingly, WL15 treatment showed a protective effect by reducing the toxicity of alloxan exposed zebrafish larvae by increasing their survival and heart rate. Moreover, WL15 reduced the intracellular ROS level and apoptosis in alloxan-induced larvae. The superoxide anion and lipid peroxidation levels are also reduced by improving the glutathione content after the WL15 treatment. Besides, WL15 treatment increased the proliferation rate of ß-cells and decreased the glucose level. Further, the gene expression studies revealed that WL15 treatment normalized the PEPCK expression while upregulating the insulin expression in alloxan exposed larvae. CONCLUSION: Overall, the findings indicate that WL15 of cysteine and glycine-rich protein 2 can act as a potential antioxidant for type 2 diabetes patients in respect of improving ß-cell regeneration.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Ratos , Aloxano/efeitos adversos , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Histona Acetiltransferases/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Larva/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
16.
Mol Biol Rep ; 49(8): 7425-7435, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716287

RESUMO

BACKGROUND: Boswellia serrate is an ancient and highly valued ayurvedic herb. Its extracts have been used in medicine for centuries to treat a wide variety of chronic inflammatory diseases. However, the mechanism by which B. serrata hydro alcoholic extract inhibited pro-inflammatory cytokines in zebrafish (Danio rerio) larvae with LPS-induced inflammation remained unknown. METHODS: LC-MS analysis was used to investigate the extract's phytochemical components. To determine the toxicity of B. serrata extract, cytotoxicity and embryo toxicity tests were performed. The in-vivo zebrafish larvae model was used to evaluate the antioxidant and anti-inflammatory activity of B. serrata extract. RESULTS: According to an in silico study using molecular docking and ADMET, the compounds acetyl-11-keto-boswellic and 11-keto-beta-boswellic acid present in the extract had higher binding affinity for the inflammatory specific receptor, and it is predicted to be an orally active molecule. In both in-vitro L6 cells and in-vivo zebrafish larvae, 160 µg/mL concentration of extract caused a high rate of lethality. The extract was found to have a protective effect against LPS-induced inflammation at concentrations ranged between 10 and 80 µg/mL. In zebrafish larvae, 80 µg/mL of treatment significantly lowered the level of intracellular ROS, apoptosis, lipid peroxidation, and nitric oxide. Similarly, zebrafish larvae treated with B. serrata extract (80 µg/mL) showed an increased anti-inflammatory activity by lowering inflammatory specific gene expression (iNOS, TNF-α, COX-2, and IL-1). CONCLUSIONS: Overall, our findings suggest that B. serrata can act as a potent redox scavenger against LPS-induced inflammation in zebrafish larvae and an inhibitor of specific inflammatory genes.


Assuntos
Boswellia , Triterpenos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Boswellia/química , Citocinas/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Larva , Lipopolissacarídeos/toxicidade , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Triterpenos/química , Peixe-Zebra
17.
Environ Res ; 212(Pt A): 113153, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35341753

RESUMO

This research reports on the production of copper oxide nanoparticles (CuO NPs) through the green synthesis method using Azadirachta indica (Ai) flower extract. Synthesized Ai-CuO NPs are characterized by Zeta Potential, TGA, SEM and TEM analysis. The Ai-CuO NPs gave a maximum peak at 270 nm. As per XRD studies, the Ai-CuO NPs obtained were crystalline. FTIR spectrum Ai-CuO NPs showed the presence of functional groups like the O-H group, aromatic group, etc. TEM and SEM assist in investigating the size and morphology of the Ai-CuO NPs, which were spherical and varied in size between 10.11 nm and 17.54 nm. EDAX showed that Ai-CuO NPs were pure with no impurities. The synthesized Ai-CuO NPs were then analyzed for their cytotoxicity at various concentrations (5, 10, 20, 30, 40 and 50 µg/mL) against H9c2 cardiomyocyte cells using MTT assay. DOX-induced H9c2 cell damage of apoptosis and ROS. The nanoparticle formed by Ai-CuO was cured with different concentrations (5, 10 and 20 µg/mL). In zebrafish, 48 hpf and 72 hpf were measured at 75 µM to reduce dysfunction and mortality during organ development. These results can have a beneficial impact on eco-toxicological effects.


Assuntos
Azadirachta , Nanopartículas Metálicas , Nanopartículas , Animais , Cobre/química , Cobre/toxicidade , Desenvolvimento Embrionário , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Miócitos Cardíacos , Nanopartículas/toxicidade , Óxidos , Peixe-Zebra
18.
Chem Biodivers ; 19(9): e202200041, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026548

RESUMO

Reactive oxygen species (ROS) produced by cell metabolism have a duplex role in oxidation and inflammation reactions which involve cell damage or repair responses. Excess ROS production has detrimental effects on the survival of cells. We examined the protective effect of a semi-natural compound NF2 (deacetylepoxyazadiradione), for its protective activity against free radical-mediated stress and inflammatory response to lipopolysaccharide (LPS) using zebrafish larvae. Preliminary antioxidant assays indicated an increase in scavenging of free radicals from NF2 than NF1 (Epoxyazadiradione) in a concentration-dependent manner. Cell cytotoxicity was determined using rat myoblast cell lines (L6), and more than 95 % of cell viability was obtained. Zebrafish developmental toxicity test indicated that NF2 is not toxic even at 150 µM. The percentage of ROS, lipid peroxidation, nitric oxide and apoptosis were reduced significantly in NF2 treated LPS-stressed zebrafish larvae. The reduced number of employed macrophages on NF2 treatment was observed in neutral red dye-marked macrophage localization images. Relative expression of antioxidant genes in zebrafish larvae after treatment with NF2 is significantly increased. The RT-PCR quantification of antioxidant and anti-inflammatory gene expression indicated decreased relative folds of pro-inflammatory cytokines, iNOS and increased relative folds of mitochondrial antioxidant genes (GR, GST and GPx) in LPS stressed zebrafish larvae after treatment with NF2. From the overall obtained results, it can be concluded that NF2 reduced the oxidative stress and inflammatory response by scavenging free radicals caused by LPS.


Assuntos
Azadirachta , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citocinas/metabolismo , Frutas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Larva , Limoninas , Lipopolissacarídeos/farmacologia , Vermelho Neutro/farmacologia , Óxido Nítrico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
19.
J Integr Plant Biol ; 64(2): 287-300, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35048537

RESUMO

Adverse variations of abiotic environmental cues that deviate from an optimal range impose stresses to plants. Abiotic stresses severely impede plant physiology and development. Consequently, such stresses dramatically reduce crop yield and negatively impact on ecosystem stability and composition. Physical components of abiotic stresses can be, for example, suboptimal temperature and osmotic perturbations, while representative chemical facets of abiotic stresses can be toxic ions or suboptimal nutrient availability. The sheer complexity of abiotic stresses causes a multitude of diverse components and mechanisms for their sensing and signal transduction. Ca2+ , as a versatile second messenger, plays multifaceted roles in almost all abiotic stress responses in that, for a certain abiotic stress, Ca2+ is not only reciprocally connected with its perception, but also multifunctionally ensures subsequent signal transduction. Here, we will focus on salt/osmotic stress and responses to altered nutrient availability as model cases to detail novel insights into the identity of components that link stress perception to Ca2+ signal formation as well as on new insights into mechanisms of Ca2+ signal implementation. Finally, we will deduce emerging conceptual consequences of these novel insights and outline arising avenues of future research on the role of Ca2+ signaling in abiotic stress responses in plants.


Assuntos
Secas , Ecossistema , Regulação da Expressão Gênica de Plantas , Plantas , Transdução de Sinais , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA