Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 195(10): 4853-60, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453752

RESUMO

Foxp3-expressing CD4(+) regulatory T cells (Tregs) are vital for maintaining immune tolerance in animal models of various immune diseases. In the present study, we demonstrated that bee venom phospholipase A2 (bvPLA2) is the major BV compound capable of inducing Treg expansion and promotes the survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. We associated this neuroprotective effect of bvPLA2 with microglial deactivation and reduction of CD4(+) T cell infiltration. Interestingly, bvPLA2 had no effect on mice depleted of Tregs by injecting anti-CD25 Ab. This finding indicated that Treg-mediated modulation of peripheral immune tolerance is strongly involved in the neuroprotective effects of bvPLA2. Furthermore, our results showed that bvPLA2 directly bound to CD206 on dendritic cells and consequently promoted the secretion of PGE2, which resulted in Treg differentiation via PGE2 (EP2) receptor signaling in Foxp3(-)CD4(+) T cells. These observations suggest that bvPLA2-CD206-PGE2-EP2 signaling promotes immune tolerance through Treg differentiation and contributes to the prevention of various neurodegenerative diseases, including Parkinson's disease.


Assuntos
Venenos de Abelha/farmacologia , Neurônios Dopaminérgicos/imunologia , Proteínas de Insetos/farmacologia , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fosfolipases A2/farmacologia , Linfócitos T Reguladores/imunologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Dinoprostona/genética , Dinoprostona/imunologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Intoxicação por MPTP/genética , Intoxicação por MPTP/imunologia , Intoxicação por MPTP/patologia , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Linfócitos T Reguladores/patologia
2.
Oncotarget ; 8(33): 54951-54965, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903394

RESUMO

Tumor-associated macrophages (TAM) are a major component of tumor stroma. It has been reported that TAMs have M2-like phenotype and facilitate tumor progression by promoting angiogenesis and immunosuppression. Melittin, a major polypeptide of bee venom, has been widely studied as an anti-cancer drug due to its cytotoxicity to malignant cells. However, very little is known regarding the effect of melittin on immune cells in the tumor microenvironment. This study focuses on the effect of melittin on TAMs in a Lewis lung carcinoma mouse model. Melittin inhibited the rapid tumor growth compared to the control in vivo. Melittin increased the M1/M2 ratio of TAMs by selectively reducing the number of CD206+ M2-like TAMs while not altering the population of CD86+ M1-like TAMs. Melittin also preferentially binds to M2 macrophages, and this binding was not associated with phagocytosis. Gene and protein expression of vascular endothelial growth factor (Vegf) and mannose receptor C type 1 (Mrc1/CD206) was reduced in M2-like bone marrow-derived macrophages by melittin treatment, but there was no significant change in the gene level of Vegf and FMS-like tyrosine kinase 1 (Flt1/VEGFR1) in tumor cells in vitro. Additionally, the levels of VEGF and CD31, markers of angiogenesis, were significantly decreased by melittin treatment in tumor tissues. This study revealed a novel role for melittin in tumor treatment and suggested that melittin could be a promising therapeutic agent for targeting M2-like TAMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA