Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569732

RESUMO

Bronchopulmonary dysplasia (BPD), caused by hyperoxia in newborns and infants, results in lung damage and abnormal pulmonary function. However, the current treatments for BPD are steroidal and pharmacological therapies, which cause neurodevelopmental impairment. Treatment with umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) is an efficient alternative approach. To prevent pulmonary inflammation in BPD, this study investigated the hypothesis that a key regulator was secreted by MSCs to polarize inflammatory macrophages into anti-inflammatory macrophages at inflammation sites. Lipopolysaccharide-induced macrophages co-cultured with MSCs secreted low levels of the inflammatory cytokines, IL-8 and IL-6, but high levels of the anti-inflammatory cytokine, IL-10. Silencing decorin in MSCs suppressed the expression of CD44, which mediates anti-inflammatory activity in macrophages. The effects of MSCs were examined in a rat model of hyperoxic lung damage. Macrophage polarization differed depending on the levels of decorin secreted by MSCs. Moreover, intratracheal injection of decorin-silenced MSCs or MSCs secreting low levels of decorin confirmed impaired alveolarization of damaged lung tissues by down-regulation of decorin. In tissues, a decrease in the anti-inflammatory macrophage marker, CD163, was observed via CD44. Thus, we identified decorin as a key paracrine factor, inducing macrophage polarization via CD44, a master immunoregulator in mesenchymal stem cells.


Assuntos
Decorina/biossíntese , Sangue Fetal/citologia , Receptores de Hialuronatos/sangue , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Hiperóxia/complicações , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/terapia , Ratos
2.
Int J Mol Sci ; 14(9): 17986-8001, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24005862

RESUMO

Various source-derived mesenchymal stem cells (MSCs) have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM), adipose tissue (AT), and umbilical cord blood-derived MSCs (UCB-MSCs) for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS)-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α), IL-6, and IL-8 via angiopoietin-1 (Ang-1). Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA), we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Angiopoietina-1/metabolismo , Western Blotting , Criança , Humanos , Imunofenotipagem , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Adulto Jovem
3.
Stem Cells Int ; 2021: 5582792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936211

RESUMO

Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro (p < 0.01), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.

4.
Cells ; 10(1)2021 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401590

RESUMO

In order to provide a sufficient number of cells for clinical use, mesenchymal stem cells (MSCs) must be cultured for long-term expansion, which inevitably triggers cellular senescence. Although the small size of MSCs is known as a critical determinant of their fate, the main regulators of stem cell senescence and the underlying signaling have not been addressed. Umbilical cord blood-derived MSCs (UCB-MSCs) were obtained using size-isolation methods and then cultured with control or small cells to investigate the major factors that modulate MSC senescence. Cytokine array data suggested that the secretion of interukin-8 (IL-8) or growth-regulated oncogene-alpha (GROa) by senescent cells was markedly inhibited during incubation of small cells along with suppression of cognate receptor (C-X-C motif chemokine receptor2, CXCR2) via blockade of the autocrine/paracrine positive loop. Moreover, signaling via toll-like receptor 2 (TLR2) and TLR5, both pattern recognition receptors, drove cellular senescence of MSCs, but was inhibited in small cells. The activation of TLRs (2 and 5) through ligand treatment induced a senescent phenotype in small cells. Collectively, our data suggest that small cell from UCB-MSCs exhibit delayed cellular senescence by inhibiting the process of TLR signaling-mediated senescence-associated secretory phenotype (SASP) activation.


Assuntos
Tamanho Celular , Senescência Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 5 Toll-Like/metabolismo , Comunicação Autócrina , Quimiocina CXCL1/metabolismo , Sangue Fetal/citologia , Humanos , Recém-Nascido , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Fenótipo , Receptores de Interleucina-8B/metabolismo
5.
Front Cell Dev Biol ; 9: 803645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178399

RESUMO

Mesenchymal stem cells (MSCs) are recognized as potential treatments for multiple degenerative and inflammatory disorders as a number of animal and human studies have indicated their therapeutic effects. There are also several clinically approved medicinal products that are manufactured using these cells. For such large-scale manufacturing requirements, the in vitro expansion of harvested MSCs is essential. Multiple subculturing of MSCs, however, provokes cellular senescence processes which is known to deteriorate the therapeutic efficacy of the cells. Strategies to rejuvenate or selectively remove senescent MSCs are therefore highly desirable for fostering future clinical applications of these cells. In this present study, we investigated gene expression changes related to cellular senescence of MSCs derived from umbilical cord blood and found that CD26, also known as DPP4, is significantly upregulated upon cellular aging. We further observed that the inhibition of CD26 by genetic or pharmacologic means delayed the cellular aging of MSCs with their multiple passaging in culture. Moreover, the sorting and exclusion of CD26-positive MSCs from heterogenous cell population enhanced in vitro cell attachment and reduced senescence-associated cytokine secretion. CD26-negative MSCs also showed superior therapeutic efficacy in mouse lung emphysema model. Our present results collectively suggest CD26 is a potential novel target for the rejuvenation of senescent MSCs for their use in manufacturing MSC-based applications.

6.
Stem Cells Int ; 2020: 5924983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399043

RESUMO

Mesenchymal stem cells (MSCs) represent a promising means to promote tissue regeneration. However, the heterogeneity of MSCs impedes their use for regenerative medicine. Further investigation of this phenotype is required to develop cell therapies with improved clinical efficacy. Here, a small-sized population of human umbilical cord blood-derived MSCs (UCB-MSCs) was isolated using a filter and centrifuge system to analyze its stem cell characteristics. Consequently, this population showed higher cell growth and lower senescence. Additionally, it exhibited diverse stem cell properties including differentiation, stemness, and adhesion, as compared to those of the population before isolation. Using cell surface protein array or sorting analysis, both EGFR and CD49f were identified as markers associated with the small-sized population. Accordingly, suppression of these surface proteins abolished the superior characteristics of this population. Moreover, compared to that with large or nonisolated populations, the small-sized population showed greater therapeutic efficacy by promoting the engraftment potential of infused cells and reducing lung damage in an emphysema mouse model. Therefore, the isolation of this small-sized population of UCB-MSCs could be a simple and effective way to enhance the efficacy of cell therapy.

7.
Tissue Eng Regen Med ; 17(2): 193-202, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32008170

RESUMO

BACKGROUND: Regeneration of soft tissue defects is essential for adipose tissue pathologies and disease, trauma, or injury-induced damage. Here, we show that umbilical cord blood-derived mesenchymal stem cells could potentially be tailored and used for the reconstruction of specific damaged sites. Adipogenesis can be exploited in soft tissue reconstruction. Also, primary cilia play a role in the control of adipogenesis. METHODS: The adipogenic differentiation capacity of mesenchymal stem cells (MSCs) was shown to influence ciliogenesis. MSCs transfected with intraflagellar transport 88 (IFT88) small interfering RNA (siRNA), which blocks the assembly and maintenance of cilia, were examined to confirm the relationship between adipogenesis and ciliogenesis. Also, 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), calcium chelator, inhibited the ciliogenesis of MSCs in adipogenic differentiation. RESULTS: IFT88-knockdown led to decreased cilia formation and limitation of cilia elongation in adipogenesis. Additionally, intracellular calcium triggered cilia formation in MSCs adipogenesis. Interestingly, intracellular calcium cannot overcome the inhibition of adipogenesis caused by low numbers of cilia in MSCs. CONCLUSION: Our data suggested that ciliogenesis was negatively regulated by Wnt5a/ß-catenin signaling during adipogenesis. Thus, we suggest that calcium induction triggers adipogenesis and ciliogenesis.


Assuntos
Adipogenia/fisiologia , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Cílios/metabolismo , Sangue Fetal/metabolismo , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo , Tecido Adiposo , Diferenciação Celular/genética , Humanos , Células-Tronco Mesenquimais , RNA Interferente Pequeno
8.
Stem Cells Int ; 2020: 1802976, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399038

RESUMO

Therapeutic treatment of various inflammation-related diseases using mesenchymal stem cells (MSCs) has increased in recent years because of the paracrine action of these cells but shows several limitations. First, MSC-based therapies exhibit varying efficacies; thus, biomarkers should be determined to identify who may benefit from these candidate therapeutic agents. Second, the mechanism underlying the therapeutic effects is poorly understood. To evaluate the effects of human umbilical cord blood-derived MSCs (UCB-MSCs) on macrophages, the macrophage cell line NR8383 stimulated with lipopolysaccharide (LPS) was cocultured by UCB-MSCs. We found that UCB-MSCs mediated changes in macrophage polarization towards M2 from M1 macrophages. To identify the paracrine action underlying the anti-inflammation effect of UCB-MSCs, the secretion of UCB-MSCs exposed to LPS-stimulated NR8383 cells was tested using a biotin label-based 507 antibody array. Among the secreted proteins, we selected pentraxin-related protein PTX3/tumor necrosis factor-inducible gene 14 protein (PTX3) to investigate its association with UCB-MSCs in macrophage polarization. We found that human PTX3 was secreted from UCB-MSCs under inflammation condition and reinforced the M2 macrophage marker via the Dectin-1 receptor by activating MSK1/2 phosphorylation signaling in NR8383 cells. Accordingly, knockdown of PTX3 in UCB-MSCs significantly attenuated their therapeutic effects in a neonatal hyperoxic lung injury resulting in reduced survival, lung alveolarization, M2 marker expression, Dectin-1 levels, anti-inflammatory cytokines, and improved M1 marker expression and inflammatory cytokines compared to control MSC-injected rats. UCB-MSCs show therapeutic potential by controlling macrophage polarization. Interestingly, higher PTX3 levels in UCB-MSCs induced greater improvement in the therapeutic effects than lower PTX3 levels. Collectively, PTX3 is a potential marker with critical paracrine effects for predicting the therapeutic potential of MSC therapy in inflammatory diseases; quality control assessments using PTX3 may be useful for improving the therapeutic effects of UCB-MSCs.

9.
Stem Cells Int ; 2018: 6545071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123291

RESUMO

Mesenchymal stem cells- (MSCs-) based therapies show different degrees of efficacies for the treatment of various diseases, including lipogenesis. We evaluated the adipogenic differentiation ability of human umbilical cord blood-derived MSCs (hUCB-MSCs) from different donors and examined the contribution of the intracellular calcium (Ca2+) level to this diversity. hUCB-MSCs treated with Ca2+ or the Ca2+ chelator BAPTA-AM increased and decreased adipogenic differentiation, respectively. Canonical Wnt5a/ß-catenin expression decreased during adipogenic differentiation of hUCB-MSCs. Treatment with Wnt5a blocked the adipogenic differentiation of hUCB-MSCs and activated the Wnt pathway, with a decrease in the adipogenesis markers PPARγ and leptin, and reduced lipid vacuole-associated Oil red O activity. In contrast, inhibition of the Wnt pathway with dickkopf-1 and ß-catenin small interfering RNA transfection promoted the adipogenic potential of hUCB-MSCs. Interestingly, the Ca2+-based system exhibited a synergic effect on adipogenic potential through the Wnt5a/ß-catenin pathway. Our data suggest that the variable adipogenic differentiation potential of hUCB-MSCs from different lots is due to variation in the intracellular Ca2+ level, which can be used as a marker to predict hUCB-MSCs selection for lipogenesis therapy. Overall, these results demonstrate that exogenous calcium treatment enhanced the adipogenic differentiation of hUCB-MSCs via negatively regulating the Wnt5a/ß-catenin signaling pathway.

10.
Stem Cells Transl Med ; 5(4): 427-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26941359

RESUMO

UNLABELLED: Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated ß-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. SIGNIFICANCE: One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required. However, long-term growth inevitably induces cellular senescence, which potentially causes poor clinical outcomes by inducing growth arrest and the loss of stem cell properties. Thus, the identification of markers for evaluating the status of MSC senescence during long-term culture may enhance the success of MSC-based therapy. This study provides strong evidence that CD146 is a novel and useful marker for predicting senescence in human umbilical cord blood-derived MSCs (hUCB-MSCs), and CD146 can potentially be applied in quality-control assessments of hUCB-MSC-based therapy.


Assuntos
Senescência Celular , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Biomarcadores/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Regulação para Baixo , Sangue Fetal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Recém-Nascido , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/efeitos dos fármacos , Controle de Qualidade , RNA Interferente Pequeno/farmacologia
11.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA