Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(33): 23096-104, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27492212

RESUMO

Photo-curable polymers originating from 10,12-pentacosadiynoic acid (PCDA-PDA) are commonly used polydiacetylenes (PDAs). PCDA-PDA exhibits thermochromic properties undergoing a unique colorimetric transition from blue to red as the temperature is increased from low to high. In this work, we have carefully studied the temperature-dependent optical properties of PCDA-PDA by using UV-visible absorption, FTIR, Raman, and transient absorption (TA) spectroscopy in combination with quantum chemical calculations. Temperature-dependent UV-visible absorption spectra indicate that PCDA-PDA exhibits reversible thermochromic properties up to 60 °C and its thermochromic properties become irreversible above 60 °C. Such distinct thermochromic properties are also manifested in TA signals so that the electronically excited PCDA-PDA relaxes to the ground state via an intermediate state at 20 °C (blue form) but it relaxes directly back to the ground state at 80 °C (red form). The electronic relaxation dynamics of PCDA-PDA are comprehensively analyzed based on different kinetic models by using the global fitting analysis method. The intermediate state in the blue form of PCDA-PDA is clearly found to be responsible for fluorescence quenching. FTIR and Raman spectroscopy and quantum chemical calculations confirm that the H-bonds between the carboxylic acid groups in PCDA-PDA are broken at high temperatures leading to an irreversible structural change of PCDA-PDA.

2.
J Phys Chem Lett ; 7(2): 259-65, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26719954

RESUMO

Polydiacetylenes (PDAs) with thermochromic properties undergo colorimetric transitions when the external temperature is varied. This capability has the potential to enable these materials to be used as temperature sensors. These thermochromic properties of PDAs stem from their temperature-dependent optical properties. In this work, we studied the temperature-dependent optical properties of Bis-PDA-Ph, which exhibits reversible thermochromic properties, and PCDA-PDA, which exhibits irreversible thermochromic properties, by UV-visible absorption and femtosecond transient absorption spectroscopy. Our results indicate that the electronic relaxation of PDAs occurs via an intermediate state in cases where the material exhibits reversible thermochromic properties, whereas the excited PDAs relax directly back to the ground state when irreversible thermochromic properties are observed. The existence of this intermediate state in the electronic relaxation of PDAs thus plays an important role in determining their thermochromic properties. These results are very important for both understanding and strategically modulating the thermochromic properties of PDAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA