Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Clin Invest ; 117(7): 2004-13, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17571163

RESUMO

Apart from potential roles in anti-tumor surveillance, the TNF-related apoptosis-inducing ligand (TRAIL) has important regulatory functions in the host immune response. We studied antiinflammatory effects of endogenous and recombinant TRAIL (rTRAIL) in experimental meningitis. Following intrathecal application of pneumococcal cell wall, a TLR2 ligand, we found prolonged inflammation, augmented clinical impairment, and increased apoptosis in the hippocampus of TRAIL(-/-) mice. Administration of rTRAIL into the subarachnoid space of TRAIL(-/-) mice or reconstitution of hematopoiesis with wild-type bone marrow cells reversed these effects, suggesting an autoregulatory role of TRAIL within the infiltrating leukocyte population. Importantly, intrathecal application of rTRAIL in wild-type mice with meningitis also decreased inflammation and apoptosis. Moreover, patients suffering from bacterial meningitis showed increased intrathecal synthesis of TRAIL. Our findings provide what we believe is the first evidence that TRAIL may act as a negative regulator of acute CNS inflammation. The ability of TRAIL to modify inflammatory responses and to reduce neuronal cell death in meningitis suggests that it may be used as a novel antiinflammatory agent in invasive infections.


Assuntos
Meningites Bacterianas/imunologia , Meningites Bacterianas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Antígenos CD18/metabolismo , Sobrevivência Celular , Citocinas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Cocos Gram-Positivos/fisiologia , Granulócitos/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Leucócitos/citologia , Masculino , Meningites Bacterianas/genética , Meningites Bacterianas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neisseria/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Solubilidade , Taxa de Sobrevida , Ligante Indutor de Apoptose Relacionado a TNF/líquido cefalorraquidiano , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
2.
J Cereb Blood Flow Metab ; 28(3): 526-39, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17851454

RESUMO

Nitric oxide produced by the inducible nitric oxide synthase (iNOS) is believed to participate in the pathogenic events after cerebral ischemia. In this study, we examined the expression of iNOS in the brain after transient focal cerebral ischemia in mice. We detected differential expression of exons 2 and 3 of iNOS mRNA (16-fold upregulation at 24 to 72 h after middle cerebral artery occlusion, MCAO) compared with exons 6 to 8, 12 to 14, 21 to 22, and 26 to 27 (2- to 5-fold upregulation after 72 and 96 h), which would be compatible with alternative splicing. Expression levels of iNOS mRNA were too low for detection by the Northern blot analysis. Using specific antibodies, we did not detect any iNOS immunoreactivity in the mouse brain 1 to 5 days after MCAO, although we detected iNOS immunoreactivity in the lungs of mice with stroke-associated pneumonia, and in mouse and rat dura mater after lipopolysaccharide administration. In chimeric iNOS-deficient mice transplanted with wild-type bone marrow (BM) cells expressing the green fluorescent protein (GFP) or in wild-type mice transplanted with GFP(+) iNOS-deficient BM cells, no expression of iNOS was detected in GFP(+) leukocytes invading the ischemic brain or in resident brain cells. Moreover, both experimental groups did not show any differences in infarct size. Analysis of three different strains of iNOS-deficient mice and wild-type controls confirmed that infarct size was independent of iNOS deletion, but strongly confounded by the genetic background of mouse strains. In conclusion, our data suggest that iNOS is not a universal mediator of brain damage after cerebral ischemia.


Assuntos
Isquemia Encefálica/etiologia , Ataque Isquêmico Transitório/etiologia , Óxido Nítrico Sintase Tipo II/genética , Processamento Alternativo , Animais , Química Encefálica/genética , Isquemia Encefálica/enzimologia , Isquemia Encefálica/metabolismo , Éxons , Ataque Isquêmico Transitório/enzimologia , Ataque Isquêmico Transitório/metabolismo , Pulmão/enzimologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/deficiência , RNA Mensageiro/genética , Regulação para Cima/genética
3.
J Cereb Blood Flow Metab ; 32(8): 1578-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22549620

RESUMO

Preclinical trials confirmed the potential of mesenchymal stromal cells (MSCs) to improve functional recovery after experimental stroke. Beneficial effects of MSCs are often attributed to their immunosuppressive/immunomodulatory functions. Surprisingly, the influence of MSCs on the immune system after stroke is poorly understood, but requires special consideration because cerebral ischemia is associated with stroke-induced immunodepression that predisposes to bacterial infections with increased mortality. In this study, we intravenously transplanted syngeneic murine bone marrow-derived MSCs (mMSCs) into C57BL/6 mice at 6 hours after transient middle cerebral artery occlusion (MCAo; 60 minutes) to investigate the impact of MSCs on stroke-induced immunodepression. Transplantation of syngeneic splenocytes or phosphate-buffered saline (PBS) served as controls. An immune status was determined by flow cytometry on days 3 and 14 after MCAo, which did not reveal any negative effects of cell transplantation on stroke-induced immunodepression. Although our mMSCs were found to exert immunosuppressive effects in vitro, stroke-mediated immune cell dysfunction was not altered by mMSCs in ex-vivo stimulation assays with lipopolysaccharide or concanavalin A. Moreover, systemic inflammatory cytokine levels (interleukin-6, tumor necrosis factorα, interferonγ, monocyte chemoattractant protein-1) remained unchanged in the sera of mice after cerebral ischemia and cell transplantation. These results reduce safety concerns about MSC administration in ongoing clinical stroke trials.


Assuntos
Tolerância Imunológica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/terapia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Injeções Intravenosas , Contagem de Leucócitos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/imunologia , Acidente Vascular Cerebral/sangue , Imunologia de Transplantes
4.
J Cereb Blood Flow Metab ; 29(7): 1284-92, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19417756

RESUMO

Matrix metalloproteinases (MMPs) have been implicated in the pathophysiology of cerebral ischemia. In this study, we explored whether MMP activity can be visualized by noninvasive near-infrared fluorescence (NIRF) imaging using an MMP-activatable probe in a mouse model of stroke. C57Bl6 mice were subjected to transient middle cerebral artery occlusion (MCAO) or sham operation. Noninvasive NIRF imaging was performed 24 h after probe injection, and target-to-background ratios (TBRs) between the two hemispheres were determined. TBRs were significantly higher in MCAO mice injected with the MMP-activatable probe than in sham-operated mice and in MCAO mice that were injected with the nonactivatable probe as controls. Treatment with an MMP inhibitor resulted in significantly lower TBRs and lesion volumes compared to injection of vehicle. To test the contribution of MMP-9 to the fluorescence signal, MMP9-deficient (MMP9(-/-)) mice and wild-type controls were subjected to MCAO of different durations to attain comparable lesion volumes. TBRs were significantly lower in MMP9(-/-) mice, suggesting a substantial contribution of MMP-9 activity to the signal. Our study shows that MMP activity after cerebral ischemia can be imaged noninvasively with NIRF using an MMP-activatable probe, which might be a useful tool to study MMP activity in the pathophysiology of the disease.


Assuntos
Isquemia Encefálica/patologia , Raios Infravermelhos , Metaloproteinases da Matriz/análise , Microscopia de Fluorescência/métodos , Animais , Isquemia Encefálica/enzimologia , Diagnóstico por Imagem/métodos , Infarto da Artéria Cerebral Média , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Sonda Molecular , Sondas Moleculares , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA