Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 601-616, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819480

RESUMO

Several studies have outlined that changes in the honeybee gut microbial composition may impair important metabolic functions supporting the honeybees' life. Gut dysbiosis may be caused by diseases like Nosema ceranae or by other anthropic, environmental or experimental stressors. The present work contributes to increasing knowledge on the dynamics of the gut microbiome acquisition in caged honeybees, an experimental condition frequently adopted by researchers, with or without infection with N. ceranae, and fed with a bacterial mixture to control N. ceranae development. Changes of the gut microbiota were elucidated comparing microbial profile of caged and open-field reared honeybees. The absolute abundance of the major gut microbial taxa was studied with both NGS and qPCR approaches, whereas changes in the functionality were based on RAST annotations and manually curated. In general, all caged honeybees showed important changes in the gut microbiota, with [Formula: see text]-proteobacteria (Frischella, Gilliamella and Snodgrassella) lacking in all caged experimental groups. Caged honeybees infected with N. ceranae showed also a strong colonization of environmental taxa like Citrobacter, Cosenzaea and Morganella, as well as possibly pathogenic bacteria such as Serratia. The colonization of Serratia did not occur in presence of the bacterial mixture. The functionality prediction revealed that environmental bacteria or the supplemented bacterial mixture increased the metabolic potential of the honeybee gut microbiome compared to field and caged controls.


Assuntos
Microbioma Gastrointestinal , Neisseriaceae , Nosema , Abelhas , Animais , Bactérias/genética
2.
BMC Med ; 18(1): 153, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32546239

RESUMO

BACKGROUND: A connection between amyotrophic lateral sclerosis (ALS) and altered gut microbiota composition has previously been reported in animal models. This work is the first prospective longitudinal study addressing the microbiota composition in ALS patients and the impact of a probiotic supplementation on the gut microbiota and disease progression. METHODS: Fifty patients and 50 matched controls were enrolled. The microbial profile of stool samples from patients and controls was analyzed via PCR-Denaturing Gradient Gel Electrophoresis, and the main microbial groups quantified via qPCR. The whole microbiota was then analyzed via next generation sequencing after amplification of the V3-V4 region of 16S rDNA. Patients were then randomized to receive probiotic treatment or placebo and followed up for 6 months with ALSFRS-R, BMI, and FVC%. RESULTS: The results demonstrate that the gut microbiota of ALS patients is characterized by some differences with respect to controls, regardless of the disability degree. Moreover, the gut microbiota composition changes during the course of the disease as demonstrated by the significant decrease in the number of observed operational taxonomic unit during the follow-up. Interestingly, an unbalance between potentially protective microbial groups, such as Bacteroidetes, and other with potential neurotoxic or pro-inflammatory activity, such as Cyanobacteria, has been shown. The 6-month probiotic treatment influenced the gut microbial composition; however, it did not bring the biodiversity of intestinal microbiota of patients closer to that of control subjects and no influence on the progression of the disease measured by ALSFRS-R was demonstrated. CONCLUSIONS: Our study poses the bases for larger clinical studies to characterize the microbiota changes as a novel ALS biomarker and to test new microbial strategy to ameliorate the health status of the gut. TRIAL REGISTRATION: CE 107/14, approved by the Ethics Committee of the "Maggiore della Carità" University Hospital, Italy.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Adolescente , Adulto , Idoso , Animais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
3.
Appl Microbiol Biotechnol ; 100(22): 9469-9482, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717968

RESUMO

Nowadays, honey bees are stressed by a number of biotic and abiotic factors which may compromise to some extent the pollination service and the hive productivity. The EU ban of antibiotics as therapeutic agents against bee pathogens has stimulated the search for natural alternatives. The increasing knowledge on the composition and functions of the bee gut microbiota and the link between a balanced gut microbiota and health status have encouraged the research on the use of gut microorganisms to improve bee health. Somehow, we are assisting to the transfer of the "probiotic concept" into the bee science. In this review, we examine the role of the honey bee gut microbiota in bee health and critically describe the available applications of beneficial microorganisms as pest control agents and health support. Most of the strains, mainly belonging to the genera Lactobacillus, Bifidobacterium and Bacillus, are isolated from honey bee crop or gut, but some applications involve environmental strains or formulation for animal and human consumption. Overall, the obtained results show the favourable effect of applied microbial strains on bee health and productivity, in particular if strains of bee origin are used. However, it is actually not yet possible to conclude whether this strategy will ever work. In particular, many aspects regarding the overall setup of the experiments, the dose, the timing and the duration of the treatment need to be optimized, also considering the microbiological safety of the hive products (i.e. pollen and honey). In addition, a deep investigation about the effect on host immunity and physiology is envisaged. Lastly, the final users of the formulations, i.e. beekeepers, should be taken into account for the achievement of high-quality, cost-effective and easy-to-use products.


Assuntos
Abelhas/microbiologia , Abelhas/fisiologia , Microbioma Gastrointestinal , Animais , Polinização
4.
BMC Microbiol ; 15: 242, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26518441

RESUMO

BACKGROUND: Fusarium head blight (FHB) is a severe disease caused by different Fusarium species, which affects a wide range of cereal crops, including wheat. It determines from 10 to 30% of yield loss in Europe. Chemical fungicides are mainly used to reduce the incidence of FHB, but low environmental impact solutions are looked forward. Applications of soil/rhizobacteria as biocontrol agents against FHB in wheat are described in literature, whereas the potential use of lactobacilli in agriculture has scarcely been explored. RESULTS: The aim of this work was to study the inhibitory effect of two bacterial strains, Lactobacillus plantarum SLG17 and Bacillus amyloliquefaciens FLN13, against Fusarium spp. in vitro and to assess their efficacy in field, coupled to the study of the microbial community profile of wheat seeds. Antimicrobial assays were performed on agar plates and showed that the two antagonistic strains possessed antimicrobial activity against Fusarium spp. In the field study, a mixture of the two strains was applied to durum wheat i) weekly from heading until anthesis and ii) at flowering, compared to untreated and fungicide treated plots. The FHB index, combining both disease incidence and disease severity, was used to evaluate the extent of the disease on wheat. A mixture of the two microorganisms, when applied in field from heading until anthesis, was capable of reducing the FHB index. Microbial community profile of seeds was studied via PCR-DGGE, showing the presence of L. plantarum SLG17 in wheat seeds and thus underlining an endophytic behavior of the strain. CONCLUSIONS: L. plantarum SLG17 and B. amyloliquefaciens FLN13, applied as biocontrol agents starting from the heading period until anthesis of wheat plants, are promising agents for the reduction of FHB index.


Assuntos
Antibiose , Bacillus/fisiologia , Fusarium/crescimento & desenvolvimento , Lactobacillus plantarum/fisiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Inoculantes Agrícolas/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Microscopia Eletrônica de Varredura , Doenças das Plantas/prevenção & controle , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Anaerobe ; 27: 34-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657392

RESUMO

Normalization is an essential prerequisite for producing accurate real-time PCR expression analyses. The objective of this study is the selection of a set of optimal reference genes in Bifidobacterium adolescentis gene expression studies under bile exposure. B adolescentis is a particularly abundant species in the human adults gut microbiota, exerting relevant probiotic activities. In the gastrointestinal tract, bile represents a hard challenge for bacterial survival, because of its toxic effect. The natural exposure to bile in the colonic environment induces cells adaptation and tolerance mechanisms in bifidobacteria, which determines changes in gene expression profile, influencing the expression levels of housekeeping genes. In this context, the stability of 9 putative reference genes (cysS, purB, recA, rpoB-L, GADPH-R, 16S rRNA, glnA1, gyrA2, sdhA) was examined in B. adolescentis exposed to bile extract, using two different software (BestKeeper and NormFinder). Both algorithms identified gyrA2 and sdhA as the most stable genes under our experimental conditions, while 16S rRNA is the least reliable HKGs. To our best knowledge, this is the first attempt to validate reference genes in Bifidobacterium spp. and the results offer an appropriate set of reference genes suitable for qRT-PCR studies on B. adolescentis strains under bile stress.


Assuntos
Bifidobacterium/genética , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genes Bacterianos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Adulto , Bifidobacterium/efeitos dos fármacos , Bile/metabolismo , Biologia Computacional , Humanos , Software
6.
Anaerobe ; 26: 36-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24398432

RESUMO

A PCR-RFLP technique has been applied on 13 species of Bifidobacterium in order to update a previous study carried out by Baffoni et al. This method is based on the restriction endonuclease activity of HaeIII on the PCR-amplified hsp60 partial gene sequence, and allows a rapid and efficient identification of Bifidobacterium spp. strains at species and subspecies level.


Assuntos
Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Chaperonina 60/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Animais , Bifidobacterium/classificação , Desoxirribonucleases de Sítio Específico do Tipo II , Humanos
7.
N Biotechnol ; 80: 37-45, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38253287

RESUMO

The development of eco-friendly polymer composites with multifunctional properties aligns with the goals of the circular economy agenda, which aims to minimize waste and promote the sustainable use of resources by closing the loop of product life cycles. Eco-friendly polymer composites play a crucial role in achieving these objectives. The present work focuses on the preparation of fully biobased blends obtained by melt mixing a bio-polyester, poly(butylene succinate-co-adipate) (PBSA), with orange peels up to 20 wt%, to yield active polymer composites. Orange peels, employed here as natural filler, are largely available from food wastes, they are rich in phenolic compounds and possess antioxidant activity as shown by the experimental tests carried out. The thermal stability of the formulated composites is almost unchanged by the filler addition, showing only a slight decrease of the crystallization temperatures and crystalline fraction within the composites. The mechanical properties of the compounds evidence an increase in the elastic modulus together with a decrease in the tensile strength, while the elongation at break remains almost constant. The incorporation of the natural filler enabled the integration of antioxidant and antibacterial properties, which were absent in the original pristine polymer.


Assuntos
Citrus sinensis , Eliminação de Resíduos , Perda e Desperdício de Alimentos , Alimentos , Polímeros/química
8.
Probiotics Antimicrob Proteins ; 16(1): 259-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36637793

RESUMO

The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.


Assuntos
Nosema , Extratos Vegetais , Abelhas , Animais , Vitelogeninas , Antiparasitários
9.
Environ Sci Pollut Res Int ; 31(2): 2640-2656, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066270

RESUMO

A pot experiment was carried out to evaluate the remediation potential of Brassica juncea and Sorghum bicolor in the decontamination of soil polluted with heavy metals such as copper, lead, tin, and zinc along with polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy hydrocarbons. Two composts obtained from different composting processes were tested as biostimulating agents. At the end of the trial, the effect of plant/compost combinations on soil microbial composition, contaminant removal, biochemical indicators, and plant biomass production was determined. The results highlighted that compost addition improved plant biomass despite slowing down plants' removal of organic and inorganic contaminants. In addition, compost partially enhanced the soil biochemical indicators and modified the relative abundance of the rhizosphere microorganisms. Sorghum showed better mitigation performance than Brassica due to its higher growth. The soil fertility level, the choice of plant species, and microbial richness were found fundamental to perform soil remediation. In contrast, compost was relevant for a higher crop biomass yield.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Sorghum , Mostardeira , Descontaminação , Poluentes do Solo/análise , Metais Pesados/análise , Solo
10.
Front Cell Infect Microbiol ; 14: 1323157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808063

RESUMO

The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.


Assuntos
Nosema , Serratia , Animais , Abelhas/microbiologia , Serratia/patogenicidade , Serratia/genética , Serratia/crescimento & desenvolvimento , Nosema/patogenicidade , Nosema/crescimento & desenvolvimento , Nosema/fisiologia , Nosema/genética , Serratia marcescens/patogenicidade , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/genética , Trato Gastrointestinal/microbiologia , Infecções por Serratia/microbiologia , Cicloexanos/farmacologia , Serratia liquefaciens/crescimento & desenvolvimento , Serratia liquefaciens/genética , Ácidos Graxos Insaturados , Sesquiterpenos
11.
BMC Microbiol ; 13: 149, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815602

RESUMO

BACKGROUND: Bifidobacterium represents one of the largest genus within the Actinobacteria, and includes at present 32 species. These species share a high sequence homology of 16S rDNA and several molecular techniques already applied to discriminate among them give ambiguous results. RESULTS: This work illustrates a simple and cheap molecular tool for the identification of Bifidobacterium species. The hsp60 universal primers were used in a simple PCR procedure for the direct amplification of 590 bp of the hsp60 sequence. The in silico restriction analysis of bifidobacterial hsp60 partial sequences allowed the identification of a single endonuclease (HaeIII) able to provide different PCR-restriction fragment length polymorphism (RFLP) patterns in the Bifidobacterium spp. type strains evaluated. The electrophoretic analyses allowed to confirm the different RFLP patterns. CONCLUSIONS: The developed PCR-RFLP technique resulted in efficient discrimination of the tested species and subspecies and allowed the construction of a dichotomous key in order to differentiate the most widely distributed Bifidobacterium species as well as the subspecies belonging to B. pseudolongum and B. animalis.


Assuntos
Bifidobacterium/classificação , Chaperonina 60/genética , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Bifidobacterium/genética , DNA Bacteriano/genética , Genes Bacterianos , Análise de Sequência de DNA
12.
Foods ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832801

RESUMO

Fermentation is one of the most ancient strategies to improve safety and extend shelf-life of the products. Starter cultures are mainly represented by lactic acid bacteria (LAB), which may also be bioprotective agents controlling the fermentation process, the native microbiota and pathogen outgrowth. This work aimed to select new LAB strains from spontaneously fermented sausages produced in different areas of Italy, which can be effective as starter cultures and bioprotective agents in fermented salami. The strains, mainly belonging to the Latilactobacillus sakei species, were characterized for their ability to inhibit major meat pathogens, the presence of antibiotic resistances and amine production. Moreover, technological performances, such as growth and acidification kinetics at increasing NaCl concentrations, were studied. As a result, new autochthonous Lat. sakei strains were obtained, lacking antibiotic resistance, possessing antimicrobial activity against Clostridium sporogenes, Listeria monocytogenes, Salmonella and Escherichia coli and with high growth performance under osmotic pressure. These strains have the potential for future application to improve the safety of fermented meats, even under conditions in which chemical preservatives are reduced or eliminated. Moreover, studies on autochthonous cultures are pivotal for guaranteeing specific characteristics of traditional products that represent an important cultural heritage.

13.
Plants (Basel) ; 12(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771623

RESUMO

Research on the efficacy of innovative, ecofriendly biostimulants in sport turf management is scarce, with less information available from open-field experiments, and even less pertaining to thatch control-related problems. The objective was to investigate the open-field effectiveness of a commercial product, EM-1, and two newly developed products, ExpA and ExpB, in improving both rhizosphere and turfgrass, Agrostis stoloniferous L., characteristics on a golf green. ExpA and ExpB, identical in microbial composition, were equally effective in significantly increasing chlorophyll synthesis and visual turf quality, as well as in resistance to tearing out, compared to the untreated control 56 days after treatment (DAT). EM-1 showed intermediate trends between the control and novel biostimulants. The inclusion of humic acids and mycorrhizal fungi to the microbial composition in ExpB significantly improved some rhizosphere properties 56 DAT relative to the control. Results on ExpB evidenced a significant decrease in the thatch layer thickness and fresh leaf weight, associated with a significant increase in the humus thickness, organic matter decomposition and evapotranspiration efficiency. An increased dry leaf biomass was also shown. ExpA and EM-1 showed either marginal or intermediate improvements relative to the control. ExpB represents a promising alternative to alleviate negative environmental impacts associated with turf maintenance-related activities.

14.
Front Microbiol ; 14: 1127717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910174

RESUMO

Introduction: Apis mellifera evolved mainly in African, Asian, and European continents over thousands of years, leading to the selection of a considerable number of honey bees subspecies that have adapted to various environments such as hot semi-desert zones and cold temperate zones. With the evolution of honey bee subspecies, it is possible that environmental conditions, food sources, and microbial communities typical of the colonized areas have shaped the honey bee gut microbiota. Methods: In this study the microbiota of two distinct lineages (mitochondrial haplotypes) of bees Apis mellifera ruttneri (lineage A) and Apis mellifera ligustica and carnica (both lineage C) were compared. Honey bee guts were collected in a dry period in the respective breeding areas (the island of Malta and the regions of Emilia-Romagna and South Tyrol in Italy). Microbial DNA from the honey bee gut was extracted and amplified for the V3-V4 regions of the 16S rRNA gene for bacteria and for ITS2 for fungi. Results: The analyses carried out show that the Maltese lineage A honey bees have a distinctive microbiota when compared to Italian lineage C honey bees, with the most abundant genera being Bartonellaceae and Lactobacillaceae, respectively. Lactobacillaceae in Maltese Lineage A honey bees consist mainly of Apilactobacillus instead of Lactobacillus and Bombilactobacillus in the lineage C. Lineage A honey bee gut microbiota also harbors higher proportions of Arsenophonus, Bombella, Commensalibacter, and Pseudomonas when compared to lineage C. Discussion: The environment seems to be the main driver in the acquisition of these marked differences in the gut microbiota. However, the influence of other factors such as host genetics, seasonality or geography may still play a significant role in the microbiome shaping, in synergy with the environmental aspects.

15.
Sci Total Environ ; 905: 167277, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741399

RESUMO

Fungicides, insecticides and herbicides are widely used in agriculture to counteract pathogens and pests. Several of these molecules are toxic to non-target organisms such as pollinators and their lethal dose can be lowered if applied as a mixture. They can cause large and unpredictable problems, spanning from behavioural changes to alterations in the gut. The present work aimed at understanding the synergistic effects on honeybees of a combined in-hive exposure to sub-lethal doses of the insecticide thiacloprid and the fungicide penconazole. A multidisciplinary approach was used: honeybee mortality upon exposure was initially tested in cage, and the colonies development monitored. Morphological and ultrastructural analyses via light and transmission electron microscopy were carried out on the gut of larvae and forager honeybees. Moreover, the main pollen foraging sources and the fungal gut microbiota were studied using Next Generation Sequencing; the gut core bacterial taxa were quantified via qPCR. The mortality test showed a negative effect on honeybee survival when exposed to agrochemicals and their mixture in cage but not confirmed at colony level. Microscopy analyses on the gut epithelium indicated no appreciable morphological changes in larvae, newly emerged and forager honeybees exposed in field to the agrochemicals. Nevertheless, the gut microbial profile showed a reduction of Bombilactobacillus and an increase of Lactobacillus and total fungi upon mixture application. Finally, we highlighted for the first time a significant honeybee diet change after pesticide exposure: penconazole, alone or in mixture, significantly altered the pollen foraging preference, with honeybees preferring Hedera pollen. Overall, our in-hive results showed no severe effects upon administration of sublethal doses of thiacloprid and penconazole but indicate a change in honeybees foraging preference. A possible explanation can be that the different nutritional profile of the pollen may offer better recovery chances to honeybees.


Assuntos
Fungicidas Industriais , Inseticidas , Microbiota , Abelhas , Animais , Inseticidas/toxicidade , Inseticidas/química , Fungicidas Industriais/toxicidade , Neonicotinoides/toxicidade , Larva
16.
Environ Microbiome ; 18(1): 38, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098635

RESUMO

Pollinators, including solitary bees, are drastically declining worldwide. Among the factors contributing to this decline, bee pathogens and different land uses are of relevance. The link between the gut microbiome composition and host health has been recently studied for social pollinators (e.g. honeybees), whereas the information related to solitary bees is sparse. This work aimed at the characterization of the gut microbiome of the solitary bees Xylocopa augusti, Eucera fervens and Lasioglossum and attempted to correlate the gut microbial composition with the presence and load of different pathogens and land uses. Solitary bees were sampled in different sites (i.e. a farm, a natural reserve, and an urban plant nursery) showing different land uses. DNA was extracted from the gut, 16S rRNA gene amplified and sequenced. Eight pathogens, known for spillover from managed bees to wild ones, were quantified with qPCR. The results showed that the core microbiome profile of the three solitary bees significantly varied in the different species. Pseudomonas was found as the major core taxa in all solitary bees analyzed, whereas Lactobacillus, Spiroplasma and Sodalis were the second most abundant taxa in X. augusti, E. fervens and Lasioglossum, respectively. The main pathogens detected with qPCR were Nosema ceranae, Nosema bombi and Crithidia bombi, although differently abundant in the different bee species and sampling sites. Most microbial taxa did not show any correlation with the land use, apart from Snodgrassella and Nocardioides, showing higher abundances on less anthropized sites. Conversely, the pathogens species and load strongly affected the gut microbial composition, with Bifidobacterium, Apibacter, Serratia, Snodgrassella and Sodalis abundance that positively or negatively correlated with the detected pathogens load. Therefore, pathogens presence and load appear to be the main factor shaping the gut microbiome of solitary bees in Argentina.

17.
Sci Rep ; 12(1): 22638, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587034

RESUMO

Intensive conventional farm management, characterized by high agrochemicals input, could alter the composition of microbial communities with potential negative effects on both functional traits and the ecosystem services provided. In this study, we investigated the gut microbial composition of a high ecological relevance carabid Pseudoophonus rufipes, sampled in two fields subjected to conventional and organic management practices. Carabids' gut microbiota was analyzed via qPCR and NGS. Profound differences between the microbial composition of organic and conventional samples were detected: the abundance of Tenericutes and Proteobacteria was significant higher in organic and conventional samples, respectively. Spiroplasmataceae and Bifidobacteriaceae families were significantly more abundant in samples from organic management, while Enterococcaceae, Morganellaceae and Yersiniaceae were more abundant in samples from conventional management. The diverse gut microbial composition of insects between the two management systems is related to the pressure of environmental stressors and it may representing an important bioindication of ecological functions and services provided by a carabid species.


Assuntos
Besouros , Microbioma Gastrointestinal , Microbiota , Animais , Fazendas , Insetos
18.
Microorganisms ; 9(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067140

RESUMO

The role of a balanced gut microbiota to maintain health and prevent diseases is largely established in humans and livestock. Conversely, in honeybees, studies on gut microbiota perturbations by external factors have started only recently. Natural methods alternative to chemical products to preserve honeybee health have been proposed, but their effect on the gut microbiota has not been examined in detail. This study aims to investigate the effect of the administration of a bacterial mixture of bifidobacteria and Lactobacillaceae and a commercial product HiveAliveTM on honeybee gut microbiota. The study was developed in 18 hives of about 2500 bees, with six replicates for each experimental condition for a total of three experimental groups. The absolute abundance of main microbial taxa was studied using qPCR and NGS. The results showed that the majority of the administered strains were detected in the gut. On the whole, great perturbations upon the administration of the bacterial mixture and the plant-based commercial product were not observed in the gut microbiota. Significant variations with respect to the untreated control were only observed for Snodgrassella sp. for the bacterial mixture, Bartonella sp. in HiveAliveTM and Bombilactobacillus sp. for both. Therefore, the studied approaches are respectful of the honeybee microbiota composition, conceivably without compromising the bee nutritional, social and ecological functions.

19.
Pathogens ; 10(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34578150

RESUMO

Nosema ceranae is a major pathogen in the beekeeping sector, responsible for nosemosis. This disease is hard to manage since its symptomatology is masked until a strong collapse of the colony population occurs. Conversely, no medicaments are available in the market to counteract nosemosis, and only a few feed additives, with claimed antifungal action, are available. New solutions are strongly required, especially based on natural methods alternative to veterinary drugs that might develop resistance or strongly pollute honey bees and the environment. This study aims at investigating the nosemosis antiparasitic potential of some plant extracts, microbial fermentation products, organic acids, food chain waste products, bacteriocins, and fungi. Honey bees were singularly infected with 5 × 104 freshly prepared N. ceranae spores, reared in cages and fed ad libitum with sugar syrup solution containing the active ingredient. N. ceranae in the gut of honey bees was estimated using qPCR. The results showed that some of the ingredients administered, such as acetic acid at high concentration, p-coumaric acid, and Saccharomyces sp. strain KIA1, were effective in the control of nosemosis. On the other hand, wine acetic acid strongly increased the N. ceranae amount. This study investigates the possibility of using compounds such as organic acids or biological agents including those at the base of the circular economy, i.e., wine waste production, in order to improve honeybee health.

20.
Microbiol Spectr ; 9(1): e0017621, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378962

RESUMO

Several studies have outlined that a balanced gut microbiota offers metabolic and protective functions supporting honeybee health and performance. The present work contributes to increasing knowledge on the impact on the honeybee gut microbiota of the three most common veterinary drugs (oxytetracycline, sulfonamides, and tylosin). The study was designed with a semi-field approach in micro-hives containing about 500 honeybees. Micro-hives were located in an incubator during the day and moved outdoors in the late afternoon, considering the restrictions on the use of antibiotics in the open field but allowing a certain freedom to honeybees; 6 replicates were considered for each treatment. The absolute abundance of the major gut microbial taxa in newly eclosed individuals was studied with qPCR and next-generation sequencing. Antimicrobial resistance genes for the target antibiotics were also monitored using a qPCR approach. The results showed that the total amount of gut bacteria was not altered by antibiotic treatment, but qualitative variations were observed. Tylosin treatment determined a significant decrease of α- and ß-diversity indices and a strong depletion of the rectum population (lactobacilli and bifidobacteria) while favoring the ileum microorganisms (Gilliamella, Snodgrassella, and Frischella spp.). Major changes were also observed in honeybees treated with sulfonamides, with a decrease in Bartonella and Frischella core taxa and an increase of Bombilactobacillus spp. and Snodgrassella spp. The present study also shows an important effect of tetracycline that is focused on specific taxa with minor impact on alfa and beta diversity. Monitoring of antibiotic resistance genes confirmed that honeybees represent a great reservoir of tetracycline resistance genes. Tetracycline and sulfonamides resistance genes tended to increase in the gut microbiota population upon antibiotic administration. IMPORTANCE This study investigates the impact of the three most widely used antibiotics in the beekeeping sector (oxytetracycline, tylosin, and sulfonamides) on the honeybee gut microbiota and on the spread of antibiotic resistance genes. The research represents an advance to the present literature, considering that the tylosin and sulfonamides effects on the gut microbiota have never been studied. Another original aspect lies in the experimental approach used, as the study looks at the impact of veterinary drugs and feed supplements 24 days after the beginning of the administration, in order to explore perturbations in newly eclosed honeybees, instead of the same treated honeybee generation. Moreover, the study was not performed with cage tests but in micro-hives, thus achieving conditions closer to real hives. The study reaches the conclusion that the most common veterinary drugs determine changes in some core microbiota members and that incidence of resistance genes for tetracycline and sulfonamides increases following antibiotic treatment.


Assuntos
Bactérias/efeitos dos fármacos , Abelhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Drogas Veterinárias/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Abelhas/efeitos dos fármacos , Biodiversidade , Oxitetraciclina/farmacologia , Sulfonamidas/farmacologia , Tilosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA