Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(4)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916619

RESUMO

This review attempted to collate and synthesize information on goat welfare and production constraints during heat stress exposure. Among the farm animals, goats arguably are considered the best-suited animals to survive in tropical climates. Heat stress was found to negatively influence growth, milk and meat production and compromised the immune response, thereby significantly reducing goats' welfare under extensive conditions and transportation. Although considered extremely adapted to tropical climates, their production can be compromised to cope with heat stress. Therefore, information on goat adaptation and production performance during heat exposure could help assess their welfare. Such information would be valuable as the farming communities are often struggling in their efforts to assess animal welfare, especially in tropical regions. Broadly three aspects must be considered to ensure appropriate welfare in goats, and these include (i) housing and environment; (ii) breeding and genetics and (iii) handling and transport. Apart from these, there are a few other negative welfare factors in goat rearing, which differ across the production system being followed. Such negative practices are predominant in extensive systems and include nutritional stress, limited supply of good quality water, climatic extremes, parasitic infestation and lameness, culminating in low production, reproduction and high mortality rates. Broadly two types of methodologies are available to assess welfare in goats in these systems: (i) animal-based measures include behavioral measurements, health and production records and disease symptoms; (ii) resources based and management-based measures include stocking density, manpower, housing conditions and health plans. Goat welfare could be assessed based on several indicators covering behavioral, physical, physiological and productive responses. The important indicators of goat welfare include agonistic behavior, vocalization, skin temperature, body condition score (BCS), hair coat conditions, rectal temperature, respiration rate, heart rate, sweating, reduced growth, reduced milk production and reduced reproductive efficiency. There are also different approaches available by which the welfare of goats could be assessed, such as naturalistic, functional and subjective approaches. Thus, assessing welfare in goats at every production stage is a prerequisite for ensuring appropriate production in this all-important species to guarantee optimum returns to the marginal and subsistence farmers.

2.
Int Rev Immunol ; 37(1): 20-36, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29028369

RESUMO

This review attempts to cover the implication of the toll-like receptors (TLRs) in controlling immune functions with emphasis on their significance, function, regulation and expression patterns. The tripartite TLRs are type I integral transmembrane receptors that are involved in recognition and conveying of pathogens to the immune system. These paralogs are located on cell surfaces or within endosomes. The TLRs are found to be functionally involved in the recognition of self and non-self-antigens, maturation of DCs and initiation of antigen-specific adaptive immune responses as they bridge the innate and adaptive immunity. Interestingly, they also have a significant role in immunotherapy and vaccination. Signals generated by TLRs are transduced through NFκB signaling and MAP kinases pathway to recruit pro-inflammatory cytokines and co-stimulatory molecules, which promote inflammatory responses. The excess production of these cytokines leads to grave systemic disorders like tumor growth and autoimmune disorders. Hence, regulation of the TLR signaling pathway is necessary to keep the host system safe. Many molecules like LPS, SOCS1, IRAK1, NFκB, and TRAF3 are involved in modulating the TLR pathways to induce appropriate response. Though quantification of these TLRs helps in correlating the magnitude of immune response exhibited by the animal, there are several internal, external, genetic and animal factors that affect their expression patterns. So it can be concluded that any identification based on those expression profiles may lead to improper diagnosis during certain conditions.


Assuntos
Receptores Toll-Like/imunologia , Animais , Doenças Autoimunes/imunologia , Carcinogênese/imunologia , Humanos , Hipersensibilidade/imunologia , Imunidade Inata , Imunoterapia , Infecções/imunologia , Isquemia/imunologia , Ligantes , Mamíferos/imunologia , Modelos Imunológicos , Fator 88 de Diferenciação Mieloide/imunologia , Neoplasias/etiologia , Neoplasias/imunologia , Neoplasias/terapia , Regeneração/imunologia , Traumatismo por Reperfusão/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/genética
3.
Appl Biochem Biotechnol ; 167(1): 132-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22528653

RESUMO

The metagenomic approach has been used successfully to isolate novel biocatalyst gene from uncultured microorganisms. The gene encoding exo-1,4-ß-glucanase avicelase was amplified from the metagenome of the Equus burchelli fecal sample and cloned. The gene was found to be of 1,007 bp of nucleotide which encodes a protein of 318 amino acids with a calculated MW of 36 kDa. The deduced amino acid sequence was homologous with cellulases belonging to the glycosyl hydrolases 6 superfamily. The expressed protein was active towards the substrates avicel and carboxymethyl cellulose, indicating that it has bifunctional cellulolytic enzyme activity. The recombinant protein showed an activity of 5.23 U with specific activity of 6.8 U mg(-1) protein with the substrate avicel, while when CMC was used, an activity of 3.0 U with a specific activity of 4.2 U mg(-1) protein was achieved. Its optimum pH was determined to be 7.0 and optimum temperature of 35°C.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulase/química , Celulase/genética , Celulose/metabolismo , Fezes/microbiologia , Metagenoma , Animais , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Equidae , Cinética , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA