Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Physiology (Bethesda) ; 36(4): 203-219, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34159803

RESUMO

Obtundation of wakefulness caused by opioids and loss of wakefulness caused by anesthetics and sleep significantly alter concentrations of molecules comprising the prefrontal cortex (PFC) metabolome. Quantifying state-selective changes in the PFC metabolome is essential for advancing functional metabolomics. Diverse functions of the PFC suggest the PFC metabolome as a potential therapeutic entry point for countermeasures to state-selective autonomic dysfunction.


Assuntos
Analgésicos Opioides , Anestesia , Humanos , Metaboloma , Córtex Pré-Frontal , Sono
2.
J Neurophysiol ; 126(4): 1265-1275, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469699

RESUMO

The electroencephalogram (EEG) provides an objective, neural correlate of consciousness. Opioid receptors modulate mammalian neuronal excitability, and this fact was used to characterize how opioids administered to mice alter EEG power and states of consciousness. The present study tested the hypothesis that antinociceptive doses of fentanyl, morphine, or buprenorphine differentially alter the EEG and states of sleep and wakefulness in adult, male C57BL/6J mice. Mice were anesthetized and implanted with telemeters that enabled wireless recordings of cortical EEG and electromyogram (EMG). After surgical recovery, EEG and EMG were used to objectively score states of consciousness as wakefulness, rapid eye movement (REM) sleep, or non-REM (NREM) sleep. Measures of EEG power (dB) were quantified as δ (0.5-4 Hz), θ (4-8 Hz), α (8-13 Hz), σ (12-15 Hz), ß (13-30 Hz), and γ (30-60 Hz). Compared with saline (control), fentanyl and morphine decreased NREM sleep, morphine eliminated REM sleep, and buprenorphine eliminated NREM sleep and REM sleep. Opioids significantly and differentially disrupted the temporal organization of sleep/wake states, altered specific EEG frequency bands, and caused dissociated states of consciousness. The results are discussed relative to the fact that opioids, pain, and sleep modulate interacting states of consciousness.NEW & NOTEWORTHY This study discovered that antinociceptive doses of fentanyl, morphine, and buprenorphine significantly and differentially disrupt EEG-defined states of consciousness in C57BL/6J mice. These data are noteworthy because: 1) buprenorphine is commonly used in medication-assisted therapy for opioid addiction, and 2) there is evidence that disordered sleep can promote addiction relapse. The results contribute to community phenotyping efforts by making publicly available all descriptive and inferential statistics from this study (Supplemental Tables S1-S8).


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Buprenorfina/farmacologia , Estado de Consciência/efeitos dos fármacos , Transtornos Dissociativos/induzido quimicamente , Eletrocorticografia/efeitos dos fármacos , Fentanila/farmacologia , Morfina/farmacologia , Fases do Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Analgésicos/administração & dosagem , Analgésicos Opioides/administração & dosagem , Animais , Buprenorfina/administração & dosagem , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Fentanila/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem
3.
J Neurophysiol ; 125(5): 1899-1919, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826874

RESUMO

Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death. However, factors such as individual vulnerability, neuromodulatory compensation, and redundancy of opioid effects across central and peripheral nervous systems have created a barrier to a concise, integrative view of OIRD. Within this review, we bring together multiple perspectives in the field of OIRD to create an overarching viewpoint of what we know, and where we view this essential topic of research going forward into the future.


Assuntos
Analgésicos Opioides/farmacologia , Geradores de Padrão Central/efeitos dos fármacos , Bulbo/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/complicações , Insuficiência Respiratória/induzido quimicamente , Analgésicos Opioides/efeitos adversos , Animais , Humanos
4.
J Neurophysiol ; 124(6): 2012-2021, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112692

RESUMO

Identifying similarities and differences in the brain metabolome during different states of consciousness has broad relevance for neuroscience and state-dependent autonomic function. This study focused on the prefrontal cortex (PFC) as a brain region known to modulate states of consciousness. Anesthesia was used as a tool to eliminate wakefulness. Untargeted metabolomic analyses were performed on microdialysis samples obtained from mouse PFC during wakefulness and during isoflurane anesthesia. Analyses detected 2,153 molecules, 91 of which could be identified. Analytes were grouped as detected during both wakefulness and anesthesia (n = 61) and as unique to wakefulness (n = 23) or anesthesia (n = 7). Data were analyzed using univariate and multivariate approaches. Relative to wakefulness, during anesthesia there was a significant (q < 0.0001) fourfold change in 21 metabolites. During anesthesia 11 of these 21 molecules decreased and 10 increased. The Kyoto Encyclopedia of Genes and Genomes database was used to relate behavioral state-specific changes in the metabolome to metabolic pathways. Relative to wakefulness, most of the amino acids and analogs measured were significantly decreased during isoflurane anesthesia. Nucleosides and analogs were significantly increased during anesthesia. Molecules associated with carbohydrate metabolism, maintenance of lipid membranes, and normal cell functions were significantly decreased during anesthesia. Significant state-specific changes were also discovered among molecules comprising lipids and fatty acids, monosaccharides, and organic acids. Considered together, these molecules regulate point-to-point transmission, volume conduction, and cellular metabolism. The results identify a novel ensemble of candidate molecules in PFC as putative modulators of wakefulness and the loss of wakefulness.NEW & NOTEWORTHY The loss of wakefulness caused by a single concentration of isoflurane significantly altered levels of interrelated metabolites in the prefrontal cortex. The results support the interpretation that states of consciousness reflect dynamic interactions among cortical neuronal networks involving a humbling number of molecules that comprise the brain metabolome.


Assuntos
Anestesia , Anestésicos Inalatórios/farmacologia , Estado de Consciência/efeitos dos fármacos , Isoflurano/farmacologia , Metaboloma/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Vigília/efeitos dos fármacos , Anestésicos Inalatórios/administração & dosagem , Animais , Cromatografia Líquida , Isoflurano/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Espectrometria de Massas em Tandem
5.
J Neurophysiol ; 123(6): 2285-2296, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347157

RESUMO

This study quantified eight small-molecule neurotransmitters collected simultaneously from prefrontal cortex of C57BL/6J mice (n = 23) during wakefulness and during isoflurane anesthesia (1.3%). Using isoflurane anesthesia as an independent variable enabled evaluation of the hypothesis that isoflurane anesthesia differentially alters concentrations of multiple neurotransmitters and their interactions. Machine learning was applied to reveal higher order interactions among neurotransmitters. Using a between-subjects design, microdialysis was performed during wakefulness and during anesthesia. Concentrations (nM) of acetylcholine, adenosine, dopamine, GABA, glutamate, histamine, norepinephrine, and serotonin in the dialysis samples are reported (means ± SD). Relative to wakefulness, acetylcholine concentration was lower during isoflurane anesthesia (1.254 ± 1.118 vs. 0.401 ± 0.134, P = 0.009), and concentrations of adenosine (29.456 ± 29.756 vs. 101.321 ± 38.603, P < 0.001), dopamine (0.0578 ± 0.0384 vs. 0.113 ± 0.084, P = 0.036), and norepinephrine (0.126 ± 0.080 vs. 0.219 ± 0.066, P = 0.010) were higher during anesthesia. Isoflurane reconfigured neurotransmitter interactions in prefrontal cortex, and the state of isoflurane anesthesia was reliably predicted by prefrontal cortex concentrations of adenosine, norepinephrine, and acetylcholine. A novel finding to emerge from machine learning analyses is that neurotransmitter concentration profiles in mouse prefrontal cortex undergo functional reconfiguration during isoflurane anesthesia. Adenosine, norepinephrine, and acetylcholine showed high feature importance, supporting the interpretation that interactions among these three transmitters may play a key role in modulating levels of cortical and behavioral arousal.NEW & NOTEWORTHY This study discovered that interactions between neurotransmitters in mouse prefrontal cortex were altered during isoflurane anesthesia relative to wakefulness. Machine learning further demonstrated that, relative to wakefulness, higher order interactions among neurotransmitters were disrupted during isoflurane administration. These findings extend to the neurochemical domain the concept that anesthetic-induced loss of wakefulness results from a disruption of neural network connectivity.


Assuntos
Acetilcolina/metabolismo , Adenosina/metabolismo , Anestesia , Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Aprendizado de Máquina , Rede Nervosa , Norepinefrina/metabolismo , Córtex Pré-Frontal , Inconsciência/metabolismo , Vigília/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia
6.
Anesthesiology ; 128(5): 984-991, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29394163

RESUMO

BACKGROUND: Opiate-induced respiratory depression is sexually dimorphic and associated with increased risk among the obese. The mechanisms underlying these associations are unknown. The present study evaluated the two-tailed hypothesis that sex, leptin status, and obesity modulate buprenorphine-induced changes in breathing. METHODS: Mice (n = 40 male and 40 female) comprising four congenic lines that differ in leptin signaling and body weight were injected with saline and buprenorphine (0.3 mg/kg). Whole-body plethysmography was used to quantify the effects on minute ventilation. The data were evaluated using three-way analysis of variance, regression, and Poincaré analyses. RESULTS: Relative to B6 mice with normal leptin, buprenorphine decreased minute ventilation in mice with diet-induced obesity (37.2%; P < 0.0001), ob/ob mice that lack leptin (62.6%; P < 0.0001), and db/db mice with dysfunctional leptin receptors (65.9%; P < 0.0001). Poincaré analyses showed that buprenorphine caused a significant (P < 0.0001) collapse in minute ventilation variability that was greatest in mice with leptin dysfunction. There was no significant effect of sex or body weight on minute ventilation. CONCLUSIONS: The results support the interpretation that leptin status but not body weight or sex contributed to the buprenorphine-induced decrease in minute ventilation. Poincaré plots illustrate that the buprenorphine-induced decrease in minute ventilation variability was greatest in mice with impaired leptin signaling. This is relevant because normal respiratory variability is essential for martialing a compensatory response to ventilatory challenges imposed by disease, obesity, and surgical stress.


Assuntos
Analgésicos Opioides/efeitos adversos , Buprenorfina/efeitos adversos , Leptina/fisiologia , Obesidade/fisiopatologia , Insuficiência Respiratória/induzido quimicamente , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fatores Sexuais
7.
Eur J Neurosci ; 40(1): 2264-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24674578

RESUMO

The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO γ-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (i) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR and nociception; (ii) propofol decreases GABA levels in the PnO; and (iii) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor [3-mercaptopropionic acid (3-MPA)] or a GABA uptake inhibitor [nipecotic acid (NPA)] into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (-18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss.


Assuntos
Anestésicos Gerais/farmacologia , Tegmento Pontino/efeitos dos fármacos , Tegmento Pontino/fisiopatologia , Privação do Sono/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Ácido 3-Mercaptopropiônico/farmacologia , Animais , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , GABAérgicos/farmacologia , Inibidores da Captação de GABA/farmacologia , Temperatura Alta , Hiperalgesia/fisiopatologia , Isoflurano/farmacologia , Masculino , Ácidos Nipecóticos/farmacologia , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Propofol/farmacologia , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Fatores de Tempo
8.
Anesth Analg ; 118(6): 1293-300, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24842176

RESUMO

BACKGROUND: Agonist binding at the benzodiazepine site of γ-aminobutric acid type A receptors diminishes anxiety and insomnia by actions in the amygdala. The neurochemical effects of benzodiazepine site agonists remain incompletely understood. Cholinergic neurotransmission modulates amygdala function, and this study tested the hypothesis that benzodiazepine site agonists alter acetylcholine (ACh) release in the amygdala. METHODS: Microdialysis and high-performance liquid chromatography quantified ACh release in the amygdala of Sprague-Dawley rats (n = 33). ACh was measured before and after IV administration (3 mg/kg) of midazolam or eszopiclone, with and without anesthesia. ACh in isoflurane-anesthetized rats during dialysis with Ringer's solution (control) was compared with ACh release during dialysis with Ringer's solution containing (100 µM) midazolam, diazepam, eszopiclone, or zolpidem. RESULTS: In unanesthetized rats, ACh in the amygdala was decreased by IV midazolam (-51.1%; P = 0.0029; 95% confidence interval [CI], -73.0% to -29.2%) and eszopiclone (-39.6%; P = 0.0222; 95% CI, -69.8% to -9.3%). In anesthetized rats, ACh in the amygdala was decreased by IV administration of midazolam (-46.2%; P = 0.0041; 95% CI, -67.9% to -24.5%) and eszopiclone (-34.0%; P = 0.0009; 95% CI, -44.7% to -23.3%), and increased by amygdala delivery of diazepam (43.2%; P = 0.0434; 95% CI, 2.1% to 84.3%) and eszopiclone (222.2%; P = 0.0159; 95% CI, 68.5% to 375.8%). CONCLUSIONS: ACh release in the amygdala was decreased by IV delivery of midazolam and eszopiclone. Dialysis delivery directly into the amygdala caused either increased (eszopiclone and diazepam) or likely no significant change (midazolam and zolpidem) in ACh release. These contrasting effects of delivery route on ACh release support the interpretation that systemically administered midazolam and eszopiclone decrease ACh release in the amygdala by acting on neuronal systems outside the amygdala.


Assuntos
Acetilcolina/metabolismo , Tonsila do Cerebelo/metabolismo , Agonistas GABAérgicos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Anestesia por Inalação , Anestésicos Inalatórios , Animais , Compostos Azabicíclicos/farmacologia , Cromatografia Líquida de Alta Pressão , Diazepam/farmacologia , Zopiclona , Agonistas GABAérgicos/administração & dosagem , Injeções Intravenosas , Isoflurano , Masculino , Microdiálise , Midazolam/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Zolpidem
9.
Anesthesiology ; 118(2): 327-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23263018

RESUMO

BACKGROUND: Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. METHODS: Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. RESULTS: First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. CONCLUSIONS: Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.


Assuntos
Acetilcolina/metabolismo , Período de Recuperação da Anestesia , Ponte/metabolismo , Receptor A1 de Adenosina/efeitos dos fármacos , Respiração/efeitos dos fármacos , Formação Reticular/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Anestesia , Animais , Nível de Alerta/fisiologia , Cromatografia Líquida de Alta Pressão , Condicionamento Operante/efeitos dos fármacos , Eletroquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Microinjeções , Ponte/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos
10.
J Neurosci ; 31(7): 2649-56, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21325533

RESUMO

Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REM(Neo)) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (-42%) and REM(Neo) (-63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared with NREM sleep, GABA levels decreased significantly during REM sleep (-27%) and REM(Neo) (-52%). Comparisons of REM sleep and REM(Neo) revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep.


Assuntos
Formação Reticular/metabolismo , Sono REM/fisiologia , Vigília/fisiologia , Ácido gama-Aminobutírico/metabolismo , Acetilcolina/metabolismo , Animais , Gatos , Cromatografia Líquida de Alta Pressão/métodos , Eletroencefalografia/métodos , Masculino , Microdiálise/métodos , Fatores de Tempo
11.
Respir Physiol Neurobiol ; 303: 103924, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662641

RESUMO

Opioids impair many functions modulated by the prefrontal cortex (PFC), including wakefulness, cognition, and breathing. In contrast, cholinergic activity in the PFC increases wakefulness. This study tested the hypothesis that microinjecting the opioid fentanyl and the acetylcholinesterase inhibitor neostigmine into the PFC of awake C57BL/6J male mice (n = 27) alters breathing. The lateral and medial PFC were unilaterally microinjected with saline (control) and fentanyl. The medial PFC received additional microinjections of neostigmine. The results show that fentanyl caused site-specific changes in breathing. Fentanyl delivered to the lateral PFC significantly decreased minute ventilation variability, whereas fentanyl delivered to the medial PFC significantly increased tidal volume and duty cycle. Neostigmine microinjected into the medial PFC significantly increased respiratory rate, tidal volume, and minute ventilation. A final series of experiments revealed that decreased minute ventilation caused by systemic fentanyl administration was mitigated by PFC microinjection of neostigmine.


Assuntos
Fentanila , Neostigmina , Acetilcolinesterase , Analgésicos Opioides/farmacologia , Animais , Fentanila/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostigmina/farmacologia , Córtex Pré-Frontal
12.
Respir Physiol Neurobiol ; 297: 103834, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954128

RESUMO

The opioid buprenorphine alters breathing and the cytokine leptin stimulates breathing. Obesity increases the risk for respiratory disorders and can lead to leptin resistance. This study tested the hypothesis that buprenorphine causes dose-dependent changes in breathing that vary as a function of obesity, leptin status, and sex. Breathing measures were acquired from four congenic mouse lines: female and male wild type C57BL/6J (B6) mice, obese db/db and ob/ob mice with leptin dysfunction, and male B6 mice with diet-induced obesity. Mice were injected intraperitoneally with saline (control) and five doses of buprenorphine (0.1, 0.3, 1.0, 3.0, 10 mg/kg). Buprenorphine caused dose-dependent decreases in respiratory frequency while increasing tidal volume, minute ventilation, and respiratory duty cycle. The effects of buprenorphine varied significantly with leptin status and sex. Buprenorphine decreased minute ventilation variability in all mice. The present findings highlight leptin status as an important modulator of respiration and encourage future studies aiming to elucidate the mechanisms through which leptin status alters breathing.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Leptina/metabolismo , Obesidade/fisiopatologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Analgésicos Opioides/administração & dosagem , Animais , Buprenorfina/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ventilação Pulmonar/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Caracteres Sexuais , Volume de Ventilação Pulmonar
13.
ISME Commun ; 2(1): 66, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37938724

RESUMO

There are known associations between opioids, obesity, and the gut microbiome, but the molecular connection/mediation of these relationships is not understood. To better clarify the interplay of physiological, genetic, and microbial factors, this study investigated the microbiome and host inflammatory responses to chronic opioid administration in genetically obese, diet-induced obese, and lean mice. Samples of feces, urine, colon tissue, and plasma were analyzed using targeted LC-MS/MS quantification of metabolites, immunoassays of inflammatory cytokine levels, genome-resolved metagenomics, and metaproteomics. Genetic obesity, diet-induced obesity, and morphine treatment in lean mice each showed increases in distinct inflammatory cytokines. Metagenomic assembly and binning uncovered over 400 novel gut bacterial genomes and species. Morphine administration impacted the microbiome's composition and function, with the strongest effect observed in lean mice. This microbiome effect was less pronounced than either diet or genetically driven obesity. Based on inferred microbial physiology from the metaproteome datasets, a high-fat diet transitioned constituent microbes away from harvesting diet-derived nutrients and towards nutrients present in the host mucosal layer. Considered together, these results identified novel host-dependent phenotypes, differentiated the effects of genetic obesity versus diet induced obesity on gut microbiome composition and function, and showed that chronic morphine administration altered the gut microbiome.

14.
J Neurosci ; 30(37): 12301-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844126

RESUMO

Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.


Assuntos
Comportamento Animal/fisiologia , Eletroencefalografia , Fenótipo , Ponte/metabolismo , Receptores de GABA-A/fisiologia , Formação Reticular/metabolismo , Vigília/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Bicuculina/administração & dosagem , Eletroencefalografia/efeitos dos fármacos , Agonistas de Receptores de GABA-A , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Microinjeções , Muscimol/administração & dosagem , Ponte/citologia , Ponte/fisiologia , Receptores de GABA-A/genética , Formação Reticular/citologia , Formação Reticular/efeitos dos fármacos , Vigília/genética , Ácido gama-Aminobutírico/fisiologia
15.
J Neurochem ; 118(4): 571-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21679185

RESUMO

The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration.


Assuntos
Ácido Glutâmico/metabolismo , Ponte/metabolismo , Ponte/fisiologia , Formação Reticular/metabolismo , Formação Reticular/fisiologia , Sono/fisiologia , Ácido gama-Aminobutírico/metabolismo , Aminoácidos/metabolismo , Animais , Comportamento Animal/fisiologia , Eletroencefalografia , Eletromiografia , Eletroforese Capilar , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley , Sono/genética , Sono REM/genética , Sono REM/fisiologia , Vigília/fisiologia
16.
Anesthesiology ; 115(4): 743-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21857500

RESUMO

BACKGROUND: Buprenorphine, a partial µ-opioid receptor agonist and κ-opioid receptor antagonist, is an effective analgesic. The effects of buprenorphine on sleep have not been well characterized. This study tested the hypothesis that an antinociceptive dose of buprenorphine decreases sleep and decreases adenosine concentrations in regions of the basal forebrain and pontine brainstem that regulate sleep. METHODS: Male Sprague Dawley rats were implanted with intravenous catheters and electrodes for recording states of wakefulness and sleep. Buprenorphine (1 mg/kg) was administered systemically via an indwelling catheter and sleep-wake states were recorded for 24 h. In additional rats, buprenorphine was delivered by microdialysis to the pontine reticular formation and substantia innominata of the basal forebrain while adenosine was simultaneously measured. RESULTS: An antinociceptive dose of buprenorphine caused a significant increase in wakefulness (25.2%) and a decrease in nonrapid eye movement sleep (-22.1%) and rapid eye movement sleep (-3.1%). Buprenorphine also increased electroencephalographic delta power during nonrapid eye movement sleep. Coadministration of the sedative-hypnotic eszopiclone diminished the buprenorphine-induced decrease in sleep. Dialysis delivery of buprenorphine significantly decreased adenosine concentrations in the pontine reticular formation (-14.6%) and substantia innominata (-36.7%). Intravenous administration of buprenorphine significantly decreased (-20%) adenosine in the substantia innominata. CONCLUSIONS: Buprenorphine significantly increased time spent awake, decreased nonrapid eye movement sleep, and increased latency to sleep onset. These disruptions in sleep architecture were mitigated by coadministration of the nonbenzodiazepine sedative-hypnotic eszopiclone. The buprenorphine-induced decrease in adenosine concentrations in basal forebrain and pontine reticular formation is consistent with the interpretation that decreasing adenosine in sleep-regulating brain regions is one mechanism by which opioids disrupt sleep.


Assuntos
Adenosina/metabolismo , Analgésicos Opioides/farmacologia , Química Encefálica/efeitos dos fármacos , Buprenorfina/farmacologia , Sono/efeitos dos fármacos , Sono/fisiologia , Animais , Compostos Azabicíclicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Zopiclona , Hipnóticos e Sedativos/farmacologia , Masculino , Microdiálise , Medição da Dor/efeitos dos fármacos , Piperazinas/farmacologia , Polissonografia/efeitos dos fármacos , Ponte/efeitos dos fármacos , Ponte/metabolismo , Ratos , Ratos Sprague-Dawley , Formação Reticular/efeitos dos fármacos , Formação Reticular/metabolismo , Substância Inominada/efeitos dos fármacos , Substância Inominada/metabolismo , Vigília/efeitos dos fármacos
17.
J Neurosci ; 29(3): 871-81, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158311

RESUMO

During prolonged intervals of wakefulness, brain adenosine levels rise within the basal forebrain and cortex. The view that adenosine promotes sleep is supported by the corollary that N-methylated xanthines such as caffeine increase brain and behavioral arousal by blocking adenosine receptors. The four subtypes of adenosine receptors are distributed heterogeneously throughout the brain, yet the neurotransmitter systems and brain regions through which adenosine receptor blockade causes arousal are incompletely understood. This study tested the hypothesis that adenosine A(1) and A(2A) receptors in the prefrontal cortex contribute to the regulation of behavioral and cortical arousal. Dependent measures included acetylcholine (ACh) release in the prefrontal cortex, cortical electroencephalographic (EEG) power, and time to waking after anesthesia. Sleep and wakefulness were also quantified after microinjecting an adenosine A(1) receptor antagonist into the prefrontal cortex. The results showed that adenosine A(1) and A(2A) receptors in the prefrontal cortex modulate cortical ACh release, behavioral arousal, EEG delta power, and sleep. Additional dual microdialysis studies revealed that ACh release in the pontine reticular formation is significantly altered by dialysis delivery of adenosine receptor agonists and antagonists to the prefrontal cortex. These data, and early brain transection studies demonstrating that the forebrain is not needed for sleep cycle generation, suggest that the prefrontal cortex modulates EEG and behavioral arousal via descending input to the pontine brainstem. The results provide novel evidence that adenosine A(1) receptors within the prefrontal cortex comprise part of a descending system that inhibits wakefulness.


Assuntos
Acetilcolina/metabolismo , Nível de Alerta/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Análise de Variância , Animais , Comportamento Animal , Cafeína/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Eletroencefalografia/métodos , Eletromiografia/métodos , Masculino , Camundongos , Microdiálise/métodos , Fenetilaminas/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Análise Espectral , Triazinas/farmacologia , Triazóis/farmacologia , Xantinas/farmacologia
18.
Sleep ; 33(10): 1285-93, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21061850

RESUMO

STUDY OBJECTIVES: Hypocretin-1/orexin A administered directly into the oral part of rat pontine reticular formation (PnO) causes an increase in wakefulness and extracellular gamma-aminobutyric acid (GABA) levels. The receptors in the PnO that mediate these effects have not been identified. Therefore, this study tested the hypothesis that the increase in wakefulness caused by administration of hypocretin-1 into the PnO occurs via activation of GABAA receptors and hypocretin receptors. DESIGN: Within/between subjects. SETTING: University of Michigan. PATIENTS OR PARTICIPANTS: Twenty-three adult male Crl:CD*(SD) (Sprague Dawley) rats. INTERVENTIONS: Microinjection of hypocretin-1, bicuculline (GABAA receptor antagonist), SB-334867 (hypocretin receptor-1 antagonist), and Ringer solution (vehicle control) into the PnO. MEASUREMENTS AND RESULTS: Hypocretin-1 caused a significant concentration-dependent increase in wakefulness and decrease in rapid eye movement (REM) sleep and non-REM (NREM) sleep. Coadministration of SB-334867 and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in both the NREM and REM phases of sleep. Coadministration of bicuculline and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in NREM sleep caused by hypocretin-1. CONCLUSION: The increase in wakefulness caused by administering hypocretin-1 to the PnO is mediated by hypocretin receptors and GABAA receptors in the PnO. These results show for the first time that hypocretinergic and GABAergic transmission in the PnO can interact to promote wakefulness.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Ponte/metabolismo , Receptores de GABA-A/metabolismo , Formação Reticular/metabolismo , Vigília/fisiologia , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Benzoxazóis/metabolismo , Benzoxazóis/farmacocinética , Bicuculina/metabolismo , Bicuculina/farmacologia , Agonistas de Receptores de GABA-A/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Soluções Isotônicas/administração & dosagem , Masculino , Microinjeções , Naftiridinas , Neuropeptídeos/metabolismo , Orexinas , Ponte/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos , Solução de Ringer , Fases do Sono/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/metabolismo , Ureia/farmacocinética , Vigília/efeitos dos fármacos
19.
Sleep ; 33(7): 909-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20614851

RESUMO

STUDY OBJECTIVES: Benzodiazepine (BDZ) and non-benzodiazepine (NBDZ) hypnotics enhance GABAergic transmission and are widely used for the treatment of insomnia. In the pontine reticular formation (PRF), GABA inhibits rapid eye movement (REM) sleep and acetylcholine (ACh) release. No previous studies have characterized the effects of BDZ and NBDZ hypnotics on ACh release in the PRF. This study tested 2 hypotheses: (1) that microdialysis delivery of zolpidem, eszopiclone, and diazepam to rat PRF alters ACh release in PRF and electroencephalographic (EEG) delta power and (2) that intravenous (i.v.) administration of eszopiclone to non-anesthetized rat alters ACh release in the PRF, sleep, and EEG delta power. DESIGN: A within- and between-groups experimental design. SETTING: University of Michigan. PATIENTS OR PARTICIPANTS: Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 57). INTERVENTIONS: In vivo microdialysis of the PRF in rats anesthetized with isoflurane was used to derive the concentration-response effects of zolpidem, eszopiclone, and diazepam on ACh release. Chronically instrumented rats were used to quantify the effects of eszopiclone (3 mg/kg, i.v.) on ACh release in the PRF, sleep-wake states, and cortical EEG power. MEASUREMENTS AND RESULTS: ACh release was significantly increased by microdialysis delivery to the PRF of zolpidem and eszopiclone but not diazepam. EEG delta power was increased by zolpidem and diazepam but not by eszopiclone administered to the PRF. Eszopiclone (i.v.) decreased ACh release in the PRF of both anesthetized and non-anesthetized rats. Eszopiclone (i.v.) prevented REM sleep and increased EEG delta power. CONCLUSION: The concentration-response data provide the first functional evidence that multiple GABA(A) receptor subtypes are present in rat PRF. Intravenously administered eszopiclone prevented REM sleep, decreased ACh release in the PRF, and increased EEG delta power. The effects of eszopiclone are consistent with evidence that ACh release in the PRF is lower during NREM sleep than during REM sleep, and with data showing that cholinergic stimulation of the PRF activates the cortical EEG.


Assuntos
Acetilcolina/metabolismo , Encéfalo/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Animais , Compostos Azabicíclicos/farmacologia , Diazepam/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Zopiclona , Agonistas de Receptores de GABA-A , Masculino , Microdiálise , Piperazinas/farmacologia , Ponte/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Formação Reticular/efeitos dos fármacos , Fases do Sono/efeitos dos fármacos , Zolpidem
20.
Anesthesiology ; 113(5): 1176-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20938334

RESUMO

BACKGROUND: Sleep apnea, hypertension, atherosclerosis, and obesity are features of metabolic syndrome associated with decreased restorative sleep and increased pain. These traits are relevant for anesthesiology because they confer increased risks of a negative anesthetic outcome. This study tested the one-tailed hypothesis that rats bred for low intrinsic aerobic capacity have enhanced nociception and disordered sleep. METHODS: Rats were developed from a breeding strategy that selected for low aerobic capacity runners (LCR) and high aerobic capacity runners (HCR). Four phenotypes were quantified. Rats underwent von Frey sensory testing (n = 12), thermal nociceptive testing (n = 12), electrographic recordings of sleep and wakefulness (n = 16), and thermal nociceptive testing (n = 14) before and for 6 weeks after a unilateral chronic neuropathy of the sciatic nerve. RESULTS: Paw withdrawal latency to a thermal nociceptive stimulus was significantly (P < 0.01) lower in LCR than HCR rats. There were also significant differences in sleep, with LCR rats spending significantly (P < 0.01) more time awake (18%) and less time in nonrapid eye movement sleep (-19%) than HCR rats. Nonrapid eye movement sleep episodes were of shorter duration (-34%) in LCR than HCR rats. Rapid eye movement sleep of LCR rats was significantly more fragmented than rapid eye movement sleep of HCR rats. LCR rats required 2 weeks longer than HCR rats to recover from peripheral neuropathy. CONCLUSIONS: Rodents with low aerobic capacity exhibit features homologous to human metabolic syndrome. This rodent model offers a novel tool for characterizing the mechanisms through which low aerobic function and obesity might confer increased risks for anesthesia.


Assuntos
Modelos Animais de Doenças , Síndrome Metabólica/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Fenótipo , Recuperação de Função Fisiológica/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Animais , Doença Crônica , Tolerância ao Exercício/fisiologia , Masculino , Síndrome Metabólica/complicações , Medição da Dor/métodos , Doenças do Sistema Nervoso Periférico/complicações , Condicionamento Físico Animal/métodos , Ratos , Transtornos do Sono-Vigília/complicações , Sono REM/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA