RESUMO
BACKGROUND: Coronavirus SARS-CoV-2, the causative agent of COVID-19, has caused a still evolving global pandemic. Given the worldwide vaccination campaign, the understanding of the vaccine-induced versus COVID-19-induced immunity will contribute to adjusting vaccine dosing strategies and speeding-up vaccination efforts. METHODS: Anti-spike-RBD IgGs and neutralizing antibodies (NAbs) titers were measured in BNT162b2 mRNA vaccinated participants (n = 250); we also investigated humoral and cellular immune responses in vaccinated individuals (n = 21) of this cohort 5 months post-vaccination and assayed NAbs levels in COVID-19 hospitalized patients (n = 60) with moderate or severe disease, as well as in COVID-19 recovered patients (n = 34). RESULTS: We found that one (boosting) dose of the BNT162b2 vaccine triggers robust immune (i.e., anti-spike-RBD IgGs and NAbs) responses in COVID-19 convalescent healthy recipients, while naïve recipients require both priming and boosting shots to acquire high antibody titers. Severe COVID-19 triggers an earlier and more intense (versus moderate disease) immune response in hospitalized patients; in all cases, however, antibody titers remain at high levels in COVID-19 recovered patients. Although virus infection promotes an earlier and more intense, versus priming vaccination, immune response, boosting vaccination induces antibody titers significantly higher and likely more durable versus COVID-19. In support, high anti-spike-RBD IgGs/NAbs titers along with spike (vaccine encoded antigen) specific T cell clones were found in the serum and peripheral blood mononuclear cells, respectively, of vaccinated individuals 5 months post-vaccination. CONCLUSIONS: These findings support vaccination efficacy, also suggesting that vaccination likely offers more protection than natural infection.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/uso terapêutico , COVID-19 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , COVID-19/terapia , Humanos , Cinética , Leucócitos Mononucleares , RNA Mensageiro , SARS-CoV-2RESUMO
Multiple myeloma (MM) is the second most common hematological malignancy, arising from terminally differentiated B cells, namely plasma cells. miRNAs are small non-coding RNAs that participate in the post-transcriptional regulation of gene expression. In this study, we investigated the role of nine miRNAs in MM. CD138+ plasma cells were selected from bone marrow aspirates from MM and smoldering MM (sMM) patients. Total RNA was extracted and in vitro polyadenylated. Next, first-strand cDNA synthesis was performed using an oligo-dT-adapter primer. For the relative quantification of the investigated miRNAs, an in-house real-time quantitative PCR (qPCR) assay was developed. A functional in silico analysis of the miRNAs was also performed. miR-16-5p and miR-155-5p expression was significantly lower in the CD138+ plasma cells of MM patients than in those of sMM patients. Furthermore, lower levels of miR-15a-5p, miR-16-5p, and miR-222-3p were observed in the CD138+ plasma cells of MM patients with osteolytic bone lesions, compared to those without. miR-125b-5p was also overexpressed in the CD138+ plasma cells of MM patients with bone disease that presented with skeletal-related events (SREs). Furthermore, lower levels of miR-223-3p were associated with significantly worse overall survival in MM patients. In conclusion, we propose a miRNA signature with putative clinical utility in MM.
Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Mieloma Múltiplo/genética , Adulto , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Análise de Sobrevida , Sindecana-1/metabolismoRESUMO
BACKGROUND: Hereditary amyloidosis refers to a wide spectrum of rare diseases with different causative mutations in the genes of various proteins including transthyretin, apolipoprotein AI and AII, gelsolin, lysozyme, cystatin C, fibrinogen Aα-chain, ß2-microglobulin, apolipoprotein CII and CIII. CASE PRESENTATION: Among hereditary amyloidosis subtypes, we describe here a specific case of Apolipoprotein AI amyloidosis (AApoAI), where the diagnosis began from an almost asymptomatic hepatomegaly followed by the development of primary hypogonadism. Baseline laboratory tests showed increased liver enzymes, while imaging tests revealed a suspected infiltrative liver disease. Patient underwent into liver biopsy and histological examination detected the presence of periodic acid-Schiff (-) and Congo-red (+) amorphous eosinophilic material within normal liver tissue. In the typing of amyloid by immunoelectron microscopy, the liver appeared heavily infiltrated by anti-apoAI (+) amyloid fibrils. Gene sequencing and mutational analysis revealed a single-base mutation at position c.251 T > C resulting in an amino acid substitution from leucine to proline in the mature ApoAI protein. This amino acid change led to lower cleavage and ApoAI deposition into the involved organs. Few years later, our patient remaining without treatment, came with symptoms consistent with primary hypogonadism but testicular involvement with ApoAI deposits could not be proven since the patient refused testicular biopsy. Based on this case, we recap the diagnostic challenges, the clinical manifestations, and the potential treatment options for this indolent hereditary amyloidosis subtype. CONCLUSIONS: This case-report enlarges the clinical picture of ApoAI-driven disease and its complex genetic background and in parallel suggests for a more systematic approach in any case with strong suspicion of hereditary amyloidosis.
Assuntos
Amiloidose Familiar/diagnóstico , Apolipoproteína A-I/genética , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Amiloidose Familiar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNAAssuntos
Anticorpos Neutralizantes/imunologia , Vacina BNT162/uso terapêutico , COVID-19/complicações , Amiloidose de Cadeia Leve de Imunoglobulina/complicações , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Antineoplásicos/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Cinética , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Myeloma cells thrive in an environment of sustained inflammation, which impacts the development and evolution of the disease, as well as drug resistance. We evaluated the impact of genetic polymorphisms in the Toll-like receptor 4 (TLR4) pathway, which have been implicated in different inflammatory responses in the outcomes of patients with symptomatic multiple myeloma (MM) who have received contemporary therapies. We found that the presence of single nucleotide polymorphisms (SNPs) in both the TLR4 and toll/interleukin-1 receptor (TIR)-associated protein (TIRAP) genes was associated with lower response to primary therapy mainly for patients who received immunomodulatory drugs but not in patients treated with bortezomib-based therapies. Furthermore, TIRAP SNP was associated with a significantly shorter progression-free survival and overall survival, independently of other prognostic factors, such as age, transplant, International Staging System stage, lactate dehydrogenase and cytogenetics. This is the first study to demonstrate the effect of SNPs in TLR4/TIRAP in MM. Our data indicate that genetic variability in the immune system may be associated with different responses to antimyeloma therapies and may be a critical component affecting the natural history of the disease, providing the basis for further investigation of the role of these pathways in myeloma.
Assuntos
Glicoproteínas de Membrana/genética , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-1/genética , Receptor 4 Toll-Like/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/administração & dosagem , DNA de Neoplasias/genética , Progressão da Doença , Feminino , Mutação em Linhagem Germinativa , Humanos , Lenalidomida , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Proteínas de Neoplasias/genética , Prognóstico , Análise de Sobrevida , Talidomida/administração & dosagem , Talidomida/análogos & derivadosAssuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162 , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , ChAdOx1 nCoV-19 , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina , Fatores de Risco , VacinaçãoRESUMO
Ire1 (Ern1) is an unusual transmembrane protein kinase essential for the endoplasmic reticulum (ER) unfolded protein response (UPR). Activation of Ire1 by association of its N-terminal ER luminal domains promotes autophosphorylation by its cytoplasmic kinase domain, leading to activation of the C-terminal ribonuclease domain, which splices Xbp1 mRNA generating an active Xbp1s transcriptional activator. We have determined the crystal structure of the cytoplasmic portion of dephosphorylated human Ire1α bound to ADP, revealing the 'phosphoryl-transfer' competent dimeric face-to-face complex, which precedes and is distinct from the back-to-back RNase 'active' conformation described for yeast Ire1. We show that the Xbp1-specific ribonuclease activity depends on autophosphorylation, and that ATP-competitive inhibitors staurosporin and sunitinib, which inhibit autophosphorylation in vitro, also inhibit Xbp1 splicing in vivo. Furthermore, we demonstrate that activated Ire1α is a competent protein kinase, able to phosphorylate a heterologous peptide substrate. These studies identify human Ire1α as a target for development of ATP-competitive inhibitors that will modulate the UPR in human cells, which has particular relevance for myeloma and other secretory malignancies.
Assuntos
Núcleo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Western Blotting , Cristalografia por Raios X , Citoplasma , Proteínas de Ligação a DNA/genética , Endorribonucleases/genética , Humanos , Proteínas de Membrana/genética , Fosforilação , Dobramento de Proteína , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Transcrição Gênica , Proteína 1 de Ligação a X-BoxAssuntos
Ácidos Nucleicos Livres , Imunoglobulina M , Mutação , Fator 88 de Diferenciação Mieloide/genética , Paraproteinemias , Receptores CXCR4/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Humanos , Masculino , Paraproteinemias/sangue , Paraproteinemias/genéticaRESUMO
Waldenström macroglobulinemia (WM) is characterized by the expansion of clonal lymphoplasmacytic cells; the MYD88L265P somatic mutation is found in >90% of patients, but malignant B cells may still display intra-clonal heterogeneity. To assess clonal heterogeneity in WM, we generated and performed single-cell RNA sequencing of CD19+ sorted cells from five patients with MYD88 L265P and two patients with MYD88 WT genotype as well as two healthy donors. We identified distinct transcriptional patterns in the clonal subpopulations not only between the two genetically distinct WM subgroups but also among MYD88 L265P patients, which affected the B cell composition in the different subgroups. Comparison of clonal and normal/polyclonal B cells within each patient sample enabled the identification of patient-specific transcriptional changes. We identified gene signatures active in a subset of MYD88L265P patients, while other signatures were active in MYD88 WT patients. Finally, gene expression analysis showed common transcriptional features between patients compared to the healthy control but also differentially expressed genes between MYD88 L265P and MYD88 WT patients involved in distinct pathways, including NFκΒ, BCL2, and BTK. Overall, our data highlight the intra-tumor clonal heterogeneity in WM with potential prognostic and therapeutic implications.
RESUMO
Lenalidomide has significant antimyeloma activity but it is associated with a significant risk of venous thromboembolism (VTE). In this study, we assessed clinical and genetic risk factors that may predispose for VTE in myeloma patients who were treated with lenalidomide-based regimens. We analyzed common clinical and selected genetic factors in 200 consecutive, unselected myeloma patients who were treated with lenalidomide-based regimens in a single institution. Twelve patients (6%) developed a VTE (nine deep venous thrombosis and three pulmonary embolism). All VTEs occurred in patients who were receiving aspirin prophylaxis; no patient who received LMWH or acenocoumarol had a VTE. The frequency of VTEs was 9.4% in previously untreated and 4.5% in previously treated patients. VTEs were more frequent in patients >65 years (8.1% vs. 1.6%) especially among patients receiving aspirin as prophylaxis (10.4% vs. 1.8% for patients ≤65 years). In patients who received prophylaxis with low dose aspirin a single-nucleotide polymorphism in NFκB1 (rs3774968) gene was associated with increased risk of VTE (OR 3.76, 95%CI 1-16, P = 0.051). None of the patients who developed VTEs had common genetic variations that are associated with increased risk of VTEs in the general population, such as FVLeiden and FIIG20210A. Our data indicated that LMWH or vitamin K antagonists (with a target INR 2-3) effectively reduce the risk of VTEs. In patients who received prophylaxis with aspirin genetic variants of genes that are involved directly or indirectly in inflammatory response may be associated with increased risk of VTE.
Assuntos
Predisposição Genética para Doença , Mieloma Múltiplo/genética , NF-kappa B/genética , Subunidades Proteicas/genética , Embolia Pulmonar/genética , Talidomida/análogos & derivados , Trombose Venosa/genética , Acenocumarol/uso terapêutico , Fatores Etários , Antineoplásicos/efeitos adversos , Aspirina/efeitos adversos , Feminino , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Fatores Imunológicos/efeitos adversos , Lenalidomida , Masculino , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Polimorfismo de Nucleotídeo Único , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/patologia , Embolia Pulmonar/prevenção & controle , Talidomida/efeitos adversos , Trombose Venosa/induzido quimicamente , Trombose Venosa/patologia , Trombose Venosa/prevenção & controleRESUMO
Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in "feeding" cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.
Assuntos
Neovascularização Patológica , Neoplasias Ovarianas/patologia , Inibidores da Angiogênese/uso terapêutico , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
mRNA vaccines have been instrumental in controlling the SARS-CoV-2 pandemic, but the short-lived protection mediated by Receptor Binding Domain (RBD)-specific antibodies necessitates frequent revaccinations to enhance vaccine-induced immunity. The development of RBD-specific B cell memory is critical for improving the qualitative and quantitative characteristics of the immune response. However, the effect of additional doses of mRNA vaccines on the composition of the RBD-specific B cell memory pool remains unclear. In this study, we found that dual BNT162b2 vaccination significantly increased both total RBD-specific and memory RBD-specific B cells and neutralizing antibodies. Following the second BNT162b2 dose, we showed a trend for the enrichment of CD27+IgM- memory RBD-specific B cells, which are known to correlate with a strong humoral response upon re-challenge. Repeated Measures Correlation (rmcorr) analysis revealed a significant correlation between antibody titers and both total and memory RBD-specific B cells, demonstrating that B cell and antibody responses are generated in a coordinated manner following BNT162b2 mRNA immunization. Our findings indicate that additional doses of the BNT162b2 mRNA vaccine enhance the qualitative and quantitative enrichment of the memory B cell pool against the vaccine antigens and collectively demonstrate the induction of a coordinated immune response to mRNA vaccination.
RESUMO
Introduction: Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods: We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results: Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion: These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration: Clinicaltrials.gov, identifier NCT04743388.
Assuntos
COVID-19 , Citocinas , Humanos , Vacina BNT162 , Interleucina-15 , SARS-CoV-2 , COVID-19/prevenção & controle , Imunidade Adaptativa , Vacinação , Anti-InflamatóriosRESUMO
CXCR4 mutations impact disease presentation and treatment outcomes in Waldenström macroglobulinemia. Current techniques used for CXCR4 mutation detection have a number of limitations. The aim of the present study was to develop and analytically validate a novel droplet digital PCR (ddPCR) assay for the simultaneous detection of five of the most common CXCR4 mutations in bone marrow (BM). In silico novel primers and probes designed for simultaneous detection of five hotspot mutations of CXCR4 were first performed. Experimental conditions were optimized, and the assay was analytically validated. The developed assay was further applied in 95 BM samples from patients with IgM gammopathy, 7 BM samples from patients with non-IgM gammopathy and 12 PBMCs from healthy donors, whereas a direct comparison study of Sanger sequencing and allele-specific PCR was performed by using 95 and 39 identical patient tumor DNA samples, respectively. The drop-off ddPCR assay is a robust, cost-effective, highly sensitive, and highly specific screening tool for CXCR4 mutations. Of 95 patients with IgM gammopathy samples, 27 had at least one CXCR4 mutation in their BM samples. With Sanger sequencing, 12 of the 95 samples tested positive, whereas the direct comparison of the developed assay with allele-specific PCR revealed substantial agreement. The clinical performance of the developed assay will be prospectively evaluated in a large number of patients, and the applicability of this assay will be further evaluated.
Assuntos
Linfoma de Células B , Macroglobulinemia de Waldenstrom , Humanos , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/genética , Mutação , Reação em Cadeia da Polimerase/métodos , Alelos , Linfoma de Células B/genética , Receptores CXCR4/genéticaRESUMO
OBJECTIVE: Severe coronavirus disease 19 (COVID-19) is characterized by a dysregulated inflammatory response, with humoral immunity playing a central role in the disease course. The objective of this study was to assess the immune response and the effects of vaccination in recovered individuals with variable disease severity up to one year following natural infection. METHODS: A prospective cohort study was conducted including patients with laboratory-confirmed COVID-19. Disease severity was classified as mild, moderate, and severe based on clinical presentation and outcomes. Anti-RBD (receptor binding domain) and neutralizing antibodies were evaluated at multiple timepoints during the first year after COVID-19 diagnosis. RESULTS: A total of 106 patients were included; of them, 28 were diagnosed with mild, 38 with moderate, and 40 with severe disease. At least one vaccine dose was administered in 58 individuals during the follow-up. Participants with mild disease presented significantly lower anti-RBD and neutralizing antibodies compared to those with moderate and severe disease up to the 3rd and 6th months after the infection, respectively. After adjusting for covariates, in the third month, severe COVID-19 was associated with significantly higher anti-RBD (ß: 563.09; 95% confidence intervals (CI): 257.02 to 869.17) and neutralizing (ß: 21.47; 95% CI: 12.04 to 30.90) antibodies. Among vaccinated individuals, at the 12th month, a history of moderate disease was associated with significantly higher anti-RBD levels (ß: 5615.19; 95% CI: 657.92 to 10,572.46). CONCLUSIONS: Severe COVID-19 is associated with higher anti-RBD and neutralizing antibodies up to 6 months after the infection. Vaccination of recovered patients is associated with a remarkable augmentation of antibody titers up to one year after COVID-19 diagnosis, regardless of disease severity.
Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Teste para COVID-19 , Estudos Prospectivos , COVID-19/diagnóstico , SARS-CoV-2 , Gravidade do Paciente , Anticorpos Neutralizantes , Vacinação , Anticorpos AntiviraisRESUMO
The genomic landscape of Waldenström macroglobulinemia (WM) is characterized by somatic mutations in MYD88, present from the precursor stages. Using the comprehensive resolution of whole genome sequencing (WGS) in 14 CD19-selected primary WM samples; comparing clonal and subclonal mutations revealed that germinal center (GC) mutational signatures SBS9 (poly-eta) and SBS84 (AID) have sustained activity, suggesting that the interaction between WM and the GC continues over time. Expanding our cohort size with 33 targeted sequencing samples, we interrogated the WM copy number aberration (CNA) landscape and chronology. Of interest, CNA prevalence progressively increased in symptomatic WM and relapsed disease when compared with stable precursor stages, with stable precursors lacking genomic complexity. Two MYD88 wild-type WGS contained a clonal gain affecting chromosome 12, which is typically an early event in chronic lymphocytic leukemia. Molecular time analysis demonstrated that both chromosomal 12 gain events occurred early in cancer development whereas other CNA changes tend to occur later in the disease course and are often subclonal. In summary, WGS analysis in WM allows the demonstration of sustained GC activity over time and allows the reconstruction of the temporal evolution of specific genomic features. In addition, our data suggest that, although MYD88-mutations are central to WM clone establishment and can be observed in precursor disease, CNA may contribute to later phases, and may be used as a biomarker for progression risk from precursor conditions to symptomatic disease.
Assuntos
Linfoma de Células B , Macroglobulinemia de Waldenstrom , Humanos , Macroglobulinemia de Waldenstrom/genética , Variações do Número de Cópias de DNA , Fator 88 de Diferenciação Mieloide/genética , Mutação , Linfoma de Células B/genética , Centro GerminativoRESUMO
Apart from the MYD88L265P mutation, extensive information exists on the molecular mechanisms in Waldenström's Macroglobulinemia and its potential utility in the diagnosis and treatment tailoring. However, no consensus recommendations are yet available. Consensus Panel 3 (CP3) of the 11th International Workshop on Waldenström's Macroglobulinemia (IWWM-11) was tasked with reviewing the current molecular necessities and best way to access the minimum data required for a correct diagnosis and monitoring. Key recommendations from IWWM-11 CP3 included: (1) molecular studies are warranted for patients in whom therapy is going to be started; such studies should also be done in those whose bone marrow (BM) material is sampled based on clinical issues; (2) molecular studies considered essential for these situations are those that clarify the status of 6q and 17p chromosomes, and MYD88, CXCR4, and TP53 genes. These tests in other situations, and/or other tests, are considered optional; (3) independently of the use of more sensitive and/or specific techniques, the minimum requirements are allele specific polymerase chain reaction for MYD88L265P and CXCR4S338X using whole BM, and fluorescence in situ hybridization for 6q and 17p and sequencing for CXCR4 and TP53 using CD19+ enriched BM; (4) these requirements refer to all patients; therefore, sample should be sent to specialized centers.
Assuntos
Macroglobulinemia de Waldenstrom , Humanos , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/terapia , Fator 88 de Diferenciação Mieloide/genética , Hibridização in Situ Fluorescente , MutaçãoRESUMO
The diagnosis of Waldenström's macroglobulinemia (WM), an IgM-associated lymphoplasmacytic lymphoma, can be challenging due to the different forms of disease presentation. Furthermore, in recent years, WM has witnessed remarkable progress on the diagnostic front, as well as a deeper understanding of the disease biology, which has affected clinical practice. This, together with the increasing variety of tools and techniques available, makes it necessary to have a practical guidance for clinicians to perform the initial evaluation of patients with WM. In this paper, we present the consensus recommendations and laboratory requirements for the diagnosis of WM developed by the European Consortium of Waldenström's Macroglobulinemia (ECWM), for both clinical practice as well as the research/academical setting. We provide the procedures for multiparametric flow cytometry, fluorescence in situ hybridization and molecular tests, and with this offer guidance for a standardized diagnostic work-up and methodological workflow of patients with IgM monoclonal gammopathy of uncertain significance, asymptomatic and symptomatic WM.
Assuntos
Macroglobulinemia de Waldenstrom , Humanos , Macroglobulinemia de Waldenstrom/diagnóstico , Hibridização in Situ Fluorescente , Imunoglobulina MRESUMO
Immunoglobulin production by myeloma plasma cells depends on the unfolded protein response for protein production and folding. Recent studies have highlighted the importance of IRE1alpha and X box binding protein 1 (XBP1), key members of this pathway, in normal B-plasma cell development. We have determined the gene expression levels of IRE1alpha, XBP1, XBP1UNSPLICED (XBP1u), and XBP1SPLICED (XBP1s) in a series of patients with myeloma and correlated findings with clinical outcome. We show that IRE1alpha and XBP1 are highly expressed and that patients with low XBP1s/u ratios have a significantly better overall survival. XBP1s is an independent prognostic marker and can be used with beta2 microglobulin and t(4;14) to identify a group of patients with a poor outcome. Furthermore, we show the beneficial therapeutic effects of thalidomide in patients with low XBP1s/u ratios. This study highlights the importance of XBP1 in myeloma and its significance as an independent prognostic marker and as a predictor of thalidomide response.