Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stem Cells ; 40(1): 22-34, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511866

RESUMO

The transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), called the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs). Knockout of linc1548 did not affect the conversion of mESCs to EpiSCs, but delayed the transition from EpiSCs to NPCs. Moreover, linc1548 interacts with the transcription factors OCT6 and SOX2 forming an RNA-protein complex to regulate the transition from EpiSCs to NPCs. Finally, we showed that Zfp521 is an important target gene of this RNA-protein complex regulating neural differentiation. Our findings prove how the intrinsic transcription complex is mediated by a lncRNA linc1548 and can better understand the intrinsic mechanism of neural fate determination.


Assuntos
Células-Tronco Embrionárias , Camadas Germinativas , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Knockout , RNA , RNA Longo não Codificante , Fatores de Transcrição SOXB1
2.
Small ; 18(43): e2106719, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35182009

RESUMO

Recycling spent lithium-ion batteries (LIBs) is an urgent task in view of the resource shortage and environmental concerns. Here, a facile ternary molten salt approach is presented for efficiently regenerating the LiNi0.5 Co0.2 Mn0.3 O2 (NCM523) cathode of spent LIBs. Such an approach involves the treatment of spent cathode powder in the ternary molten salt at a moderate temperature (400 °C) and subsequent annealing in oxygen. The Li loss and degraded phases in spent NCM that cause the capacity decay can be fully remedied after the regeneration process. As a result, the regenerated cathode delivers a reversible capacity of 160 mAh g-1 at 0.5 C with retention of 93.7% after 100 cycles and maintains a high capacity of 132 mAh g-1 at a high rate of 5 C. The electrochemical performance of regenerated NCM cathode is compared favorably to the fresh NCM cathode, which demonstrates the feasibility of the molten salt approach to directly regenerate spent NCM cathode.

3.
EMBO Rep ; 21(11): e50283, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33016573

RESUMO

A microdeletion within human chromosome 5q14.3 has been associated with the occurrence of neurodevelopmental disorders, such as autism and intellectual disability, and MEF2C haploinsufficiency was identified as main cause. Here, we report that a brain-enriched long non-coding RNA, NDIME, is located near the MEF2C locus and is required for normal neural differentiation of mouse embryonic stem cells (mESCs). NDIME interacts with EZH2, the major component of polycomb repressive complex 2 (PRC2), and blocks EZH2-mediated trimethylation of histone H3 lysine 27 (H3K27me3) at the Mef2c promoter, promoting MEF2C transcription. Moreover, the expression levels of both NDIME and MEF2C were strongly downregulated in the hippocampus of a mouse model of autism, and the adeno-associated virus (AAV)-mediated expression of NDIME in the hippocampus of these mice significantly increased MEF2C expression and ameliorated autism-like behaviors. The results of this study reveal an epigenetic mechanism by which NDIME regulates MEF2C transcription and neural differentiation and suggest potential effects and therapeutic approaches of the NDIME/MEF2C axis in autism.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fatores de Transcrição MEF2/genética , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas
4.
Stem Cells ; 36(3): 325-336, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205638

RESUMO

Clarifying the regulatory mechanisms of embryonic stem cell (ESC) neural differentiation is helpful not only for understanding neural development but also for obtaining high-quality neural progenitor cells required by stem cell therapy of neurodegenerative diseases. Here, we found that long noncoding RNA 1604 (lncRNA-1604) was highly expressed in cytoplasm during neural differentiation, and knockdown of lncRNA-1604 significantly repressed neural differentiation of mouse ESCs both in vitro and in vivo. Bioinformatics prediction and mechanistic analysis revealed that lncRNA-1604 functioned as a novel competing endogenous RNA of miR-200c and regulated the core transcription factors ZEB1 and ZEB2 during neural differentiation. Furthermore, we also demonstrated the critical role of miR-200c and ZEB1/2 in mouse neural differentiation. Either introduction of miR-200c sponge or overexpression of ZEB1/2 significantly reversed the lncRNA-1604 knockdown-induced repression of mouse ESC neural differentiation. Collectively, these findings not only identified a previously unknown role of lncRNA-1604 and ZEB1/2 but also elucidated a new regulatory lncRNA-1604/miR-200c/ZEB axis in neural differentiation. Stem Cells 2018;36:325-336.


Assuntos
MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/metabolismo , RNA Longo não Codificante/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Biologia Computacional/métodos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
5.
ISA Trans ; 147: 590-601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423838

RESUMO

In light of the problem of trajectory tracking control in vehicle servo systems with system model uncertainty and external time-varying disturbance, an effective trajectory tracking control method that can handle system model uncertainty and external time-varying disturbances is proposed. To achieve this goal, a novel composite robust integral of the sign of the error (RISE) control method is introduced that combines a multi-layer neural network and an extended state observer. Specifically, multi-layer neural networks are utilized to approximate the uncertainty of the system model, while an extended state observer is employed to estimate the fitting near-error and the external time-varying interference, which are used as feedforward compensation. Finally, the RISE controller is implemented as a robust feedback controller. By applying Lyapunov theory for stability analysis and conducting experiments, the results demonstrate that the proposed approach exhibits excellent performance and robustness in addressing the uncertainties and disturbances involved in trajectory tracking control for vehicle servo systems.

6.
ACS Appl Mater Interfaces ; 16(5): 5813-5822, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38272467

RESUMO

The electrochemical kinetic processes of Li+ ions, including the desolvation of the Li+ ions from the electrolyte to the solid electrolyte interphase (SEI), the transportation of desolvated Li+ ions across the SEI, and the charge transfer at the interface between the SEI and graphite, determine the rate performance and cycling stability of the graphitic anode in lithium-ion batteries (LIBs). In this work, fluorine-terminated self-assembled monolayers were grafted on the surface of spherical graphite particles to regulate the chemical composition and structure of SEI formed on the graphite surface in the presence of conventional ester electrolytes. The comprehensive characterization and first-principles calculation results illustrate that a uniform LiF-dominated SEI film can be generated on the as-functionalized graphite anode due to the carbon-fluorine bonds' cleavage of fluorine-terminated self-assembled monolayers. The LiF-dominated SEI film is particularly beneficial for desolvated lithium-ion transport across the SEI, affording LiCoO2//graphite full cells with substantially enhanced fast-charging capability and cycle stability. This strategy should be potentially useful for modifying other anode materials to regulate the interfacial chemistry between the anode and electrolyte in lithium-ion batteries.

7.
Cell Rep ; 37(5): 109912, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731622

RESUMO

Fetal growth restriction (FGR) increases the risk for impaired cognitive function later in life. However, the precise mechanisms remain elusive. Using dexamethasone-induced FGR and protein restriction-influenced FGR mouse models, we observe learning and memory deficits in adult FGR offspring. FGR induces decreased hippocampal neurogenesis from the early post-natal period to adulthood by reducing the proliferation of neural stem cells (NSCs). We further find a persistent decrease of Tet1 expression in hippocampal NSCs of FGR mice. Mechanistically, Tet1 downregulation results in hypermethylation of the Dll3 and Notch1 promoters and inhibition of Notch signaling, leading to reduced NSC proliferation. Overexpression of Tet1 activates Notch signaling, offsets the decline in neurogenesis, and enhances learning and memory abilities in FGR offspring. Our data indicate that a long-term decrease in Tet1/Notch signaling in hippocampal NSCs contributes to impaired neurogenesis following FGR and could serve as potential targets for the intervention of FGR-related cognitive disorders.


Assuntos
Comportamento Animal , Cognição , Proteínas de Ligação a DNA/metabolismo , Retardo do Crescimento Fetal/metabolismo , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Epigênese Genética , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/psicologia , Hipocampo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Memória , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais
8.
Artigo em Inglês | MEDLINE | ID: mdl-32340225

RESUMO

The rapid development of industry results in large energy consumption and a negative impact on the environment. Pollution of the environment caused by conventional energy sources such as petrol leads to increased demand for propulsion systems with higher efficiency and capable of energy-saving and emission reduction. The usage of hybrid technology is expected to improve energy conversion efficiency, reduce energy consumption and environmental pollution. In this paper, the simulation platform for the hybrid unmanned aerial vehicle (UAV) has been built by establishing the subsystem models of the UAV power system. Under the two chosen working conditions, the conventional cruise flight mission and the terrain tracking mission, the power tracking control and Q-Learning method have been used to design the energy management controller for the hybrid UAV. The fuel consumption and pollutant emissions under each working condition were calculated. The results show that the hybrid system can improve the efficiency of the UAV system, reduce the fuel consumption of the UAV, and so reduce the emissions of CO2, NOx, and other pollutants. This contributes to improving of environmental quality, energy-saving, and emission reduction, thereby contributing to the sustainable development of aviation.


Assuntos
Aviação , Conservação de Recursos Energéticos , Gasolina , Algoritmos , Fenômenos Físicos
9.
Cell Discov ; 5: 47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754456

RESUMO

Telomere maintenance is critical for chromosome stability. Here we report that periodic tryptophan protein 1 (PWP1) is involved in regulating telomere length homeostasis. Pwp1 appears to be essential for mouse development and embryonic stem cell (ESC) survival, as homozygous Pwp1-knockout mice and ESCs have never been obtained. Heterozygous Pwp1-knockout mice had shorter telomeres and decreased reproductive capacity. Pwp1 depletion induced rapid telomere shortening accompanied by reduced shelterin complex and increased DNA damage in telomeric regions. Mechanistically, PWP1 bound and stabilized the shelterin complex via its WD40 domains and regulated the overall level of H4K20me3. The rescue of telomere length in Pwp1-deficient cells by PWP1 overexpression depended on SUV4-20H2 co-expression and increased H4K20me3. Therefore, our study revealed a novel protein involved in telomere homeostasis in both mouse and human cells. This knowledge will improve our understanding of how chromatin structure and histone modifications are involved in maintaining telomere integrity.

10.
Stem Cell Reports ; 11(2): 395-409, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30017820

RESUMO

Although the functional roles of long noncoding RNAs (lncRNAs) have been increasingly identified, few lncRNAs that control the naïve state of embryonic stem cells (ESCs) are known. Here, we report a naïve-state-associated lncRNA, LincU, which is intrinsically activated by Nanog in mESCs. LincU-deficient mESCs exhibit a primed-like pluripotent state and potentiate the transition from the naïve state to the primed state, whereas ectopic LincU expression maintains mESCs in the naïve state. Mechanistically, we demonstrate that LincU binds and stabilizes the DUSP9 protein, an ERK-specific phosphatase, and then constitutively inhibits the ERK1/2 signaling pathway, which critically contributes to maintenance of the naïve state. Importantly, we reveal the functional role of LincU to be evolutionarily conserved in human. Therefore, our findings unveil LincU as a conserved lncRNA that intrinsically restricts MAPK/ERK activity and maintains the naïve state of ESCs.


Assuntos
Autorrenovação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , RNA Longo não Codificante/genética , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Modelos Biológicos , Interferência de RNA , Estabilidade de RNA , Transdução de Sinais
11.
Stem Cell Reports ; 11(1): 88-101, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29910124

RESUMO

During reprogramming, telomere re-elongation is important for pluripotency acquisition and ensures the high quality of induced pluripotent stem cells (iPSCs), but the regulatory mechanism remains largely unknown. Our study showed that fully reprogrammed mature iPSCs or mouse embryonic stem cells expressed higher levels of miR-590-3p and miR-590-5p than pre-iPSCs. Ectopic expression of either miR-590-3p or miR-590-5p in pre-iPSCs improved telomere elongation and pluripotency. Activin receptor II A (Acvr2a) is the downstream target and mediates the function of miR-590. Downregulation of Acvr2a promoted telomere elongation and pluripotency. Overexpression of miR-590 or inhibition of ACTIVIN signaling increased telomeric repeat binding factor 1 (Terf1) expression. The p-SMAD2 showed increased binding to the Terf1 promoter in pre-iPSCs compared with mature iPSCs. Downregulation of Terf1 blocked miR-590- or shAcvr2a-mediated promotion of telomere elongation and pluripotency in pre-iPSCs. This study elucidated the role of the miR-590/Acvr2a/Terf1 signaling pathway in modulating telomere elongation and pluripotency in pre-iPSCs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Homeostase do Telômero/genética , Telômero/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Autorrenovação Celular/genética , Camundongos , MicroRNAs/genética , Interferência de RNA , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
12.
Sci Rep ; 6: 19916, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814137

RESUMO

In pregnancy, trophoblast proliferation, migration and invasion are important for the establishment and maintenance of a successful pregnancy. Impaired trophoblast function has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy, but the underlying mechanisms remain unclear. Indoleamine 2,3-dioxygenase (IDO), an enzyme that catabolizes tryptophan along the kynurenine pathway, is highly expressed in the placenta and serum during pregnancy. Here, we identified a novel function of IDO in regulating trophoblast cell proliferation and migration. We showed that IDO expression and activity were decreased in unexplained recurrent spontaneous abortion (URSA) compared to normal pregnancy. Furthermore, blocking IDO in human trophoblast cells led to reduced proliferation and migration, along with decreased STAT3 phosphorylation and MMP9 expression. Increased STAT3 phosphorylation reversed the IDO knockdown-suppressed trophoblast cell proliferation and migration. In addition, the overexpression of IDO promoted cell proliferation and migration, which could be abolished by the STAT3 signaling inhibitor (AG490). Finally, we observed similar reductions of STAT3 phosphorylation and MMP9 expression in URSA patients. These results indicate that the level of IDO expression may be associated with pregnancy-related complications, such as URSA, by affecting trophoblast cell proliferation and migration via the STAT3 signaling pathway.


Assuntos
Aborto Espontâneo/genética , Regulação da Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Trofoblastos/metabolismo , Aborto Espontâneo/metabolismo , Adulto , Estudos de Casos e Controles , Linhagem Celular , Movimento Celular/genética , Proliferação de Células , Ativação Enzimática , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Gravidez , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA