Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36951905

RESUMO

A novel moderately thermophilic heterotrophic bacterium, designated strain 143-21T, was isolated from a deep-sea hydrothermal chimney sample collected from the Central Indian Ridge at a depth of 2 440 m. Phylogenetic analysis indicated that strain 143-21T belongs to the genus Crassaminicella. It was most closely related to Crassaminicella thermophila SY095T (96.79 % 16S rRNA gene sequence similarity) and Crassaminicella profunda Ra1766HT (96.52 %). Genomic analysis showed that strain 143-21T shares 79.79-84.45 % average nucleotide identity and 23.50-29.20 % digital DNA-DNA hybridization with the species of the genus Crassaminicella, respectively. Cells were rod-shaped, non-motile, Gram-positive-staining. Terminal endospores were observed in stationary-phase cells when strain 143-21T was grown on Thermococcales rich medium. Strain 143-21T was able to grow at 30-60 °C (optimum, 50 °C), pH 6.5-8.5 (optimum, pH 7.0) and in 1.0-7.0 % NaCl (w/v; optimum 2.0 %, w/v). Strain 143-21T utilized fructose, glucose, maltose, mannose, ribose, N-acetyl-d-(+)-glucosamine and casamino acids, as well as amino acids including glutamate, lysine, histidine and cysteine. The main fermentation products from glucose were acetate (2.07 mM), H2 and CO2. It did not reduce elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and Fe (III). The predominant cellular fatty acids were C14 : 0 (48.8 %), C16 : 0 (12.9 %), and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 10.2 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, as well as two unidentified phospholipids and four unidentified aminolipids. No respiratory quinones were detected. Based on its phylogenetic analysis and physiological characteristics, strain 143-21T is considered to represent a novel species of the genus Crassaminicella, for which the name Crassaminicella indica sp. nov. is proposed. The type strain is strain 143-21T (=DSM 114408T= MCCC 1K06400T).


Assuntos
Ácidos Graxos , Fontes Hidrotermais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Fontes Hidrotermais/microbiologia , Anaerobiose , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fosfolipídeos/química , Bactérias Anaeróbias
2.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34825884

RESUMO

A novel moderately thermophilic, anaerobic, heterotrophic bacterium (strain SY095T) was isolated from a hydrothermal vent chimney located on the Southwest Indian Ridge at a depth of 2730 m. Cells were Gram-stain-positive, motile, straight to slightly curved rods forming terminal endospores. SY095T was grown at 45-60 °C (optimum 50-55 °C), pH 6.0-7.5 (optimum 7.0), and in a salinity of 1-4.5 % (w/v) NaCl (optimum 2.5 %). Substrates utilized by SY095T included fructose, glucose, maltose, N-acetyl glucosamine and tryptone. Casamino acid and amino acids (glutamate, glutamine, lysine, methionine, serine and histidine) were also utilized. The main end products from glucose fermentation were acetate, H2 and CO2. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14 : 0 (60.5%) and C16 : 0 (7.6 %). The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified phospholipids and two unidentified aminophospholipids. No respiratory quinones were detected. The chromosomal DNA G+C content was 30.8 mol%. The results of phylogenetic analysis of the 16S rRNA gene sequences indicated that SY095T was closely related to Crassaminicella profunda Ra1766HT (95.8 % 16S rRNA gene sequence identity). SY095T exhibited 78.1 % average nucleotide identity (ANI) to C. profunda Ra1766HT. The in silico DNA-DNA hybridization (DDH) value indicated that SY095T shared 22.7 % DNA relatedness with C. profunda Ra1766HT. On the basis of its phenotypic, genotypic and phylogenetic characteristics, SY095T is suggested to represent a novel species of the genus Crassaminicella, for which the name Crassaminicella thermophila sp. nov. is proposed. The type strain is SY095T (=JCM 34213=MCCC 1K04191). An emended description of the genus Crassaminicella is also proposed.


Assuntos
Clostridiaceae/classificação , Fontes Hidrotermais , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fontes Hidrotermais/microbiologia , Oceano Índico , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
3.
Mol Ecol ; 24(1): 136-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25410123

RESUMO

The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions.


Assuntos
Fertilizantes , Fósforo/química , Microbiologia do Solo , Solo/química , Bactérias/classificação , Biomassa , Ciclo do Carbono , Ecossistema , Nitrogênio/química , Ciclo do Nitrogênio , Oryza/crescimento & desenvolvimento , Filogenia , Potássio/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA