Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201514

RESUMO

Transmissible gastroenteritis virus (TGEV) is an etiological agent of enteric disease that results in high mortality rates in piglets. The economic impact of the virus is considerable, causing significant losses to the pig industry. The development of an efficacious subunit vaccine to provide promising protection against TGEV is of the utmost importance. The viral antigen, spike glycoprotein (S), is widely regarded as one of the most effective antigenic components for vaccine research. In this study, we employed immunoinformatics and molecular dynamics approaches to develop an 'ideal' multi-epitope vaccine. Firstly, the dominant, non-toxic, highly antigenic T (Th, CTL) and B cell epitopes predicted from the TGEV S protein were artificially engineered in tandem to design candidate subunit vaccines. Molecular docking and dynamic simulation results demonstrate that it exhibits robust interactions with toll-like receptor 4 (TLR4). Of particular significance was the finding that the vaccine was capable of triggering an immune response in mammals, as evidenced by the immune simulation results. The humoral aspect is typified by elevated levels of IgG and IgM, whereas the cellular immune aspect is capable of eliciting the robust production of interleukins and cytokines (IFN-γ and IL-2). Furthermore, the adoption of E. coli expression systems for the preparation of vaccines will also result in cost savings. This study offers logical guidelines for the development of a secure and efficacious subunit vaccine against TGEV, in addition to providing a novel theoretical foundation and strategy to prevent associated CoV infections.


Assuntos
Gastroenterite Suína Transmissível , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vírus da Gastroenterite Transmissível , Vacinas Virais , Vírus da Gastroenterite Transmissível/imunologia , Animais , Vacinas Virais/imunologia , Suínos , Gastroenterite Suína Transmissível/prevenção & controle , Gastroenterite Suína Transmissível/imunologia , Epitopos de Linfócito T/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Epitopos de Linfócito B/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Biologia Computacional/métodos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Epitopos/imunologia , Epitopos/química
2.
Nucleic Acids Res ; 40(Database issue): D472-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22084200

RESUMO

This work presents the Apo-Holo DataBase (AH-DB, http://ahdb.ee.ncku.edu.tw/ and http://ahdb.csbb.ntu.edu.tw/), which provides corresponding pairs of protein structures before and after binding. Conformational transitions are commonly observed in various protein interactions that are involved in important biological functions. For example, copper-zinc superoxide dismutase (SOD1), which destroys free superoxide radicals in the body, undergoes a large conformational transition from an 'open' state (apo structure) to a 'closed' state (holo structure). Many studies have utilized collections of apo-holo structure pairs to investigate the conformational transitions and critical residues. However, the collection process is usually complicated, varies from study to study and produces a small-scale data set. AH-DB is designed to provide an easy and unified way to prepare such data, which is generated by identifying/mapping molecules in different Protein Data Bank (PDB) entries. Conformational transitions are identified based on a refined alignment scheme to overcome the challenge that many structures in the PDB database are only protein fragments and not complete proteins. There are 746,314 apo-holo pairs in AH-DB, which is about 30 times those in the second largest collection of similar data. AH-DB provides sophisticated interfaces for searching apo-holo structure pairs and exploring conformational transitions from apo structures to the corresponding holo structures.


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Modelos Moleculares , Ligação Proteica , Superóxido Dismutase/química , Superóxido Dismutase-1 , Interface Usuário-Computador
3.
Bioresour Technol ; 393: 130161, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065515

RESUMO

In the present study, an immobilized bioreactor was established to remove ammonia (NH4+-N), phosphate (PO43--P), and phenol using composite mycelium spheres (CMP) as the immobilization material in combination with Pseudomonas sp. Y1. Under optimal operating conditions, the bioreactor achieved 98.07, 91.71, and 92.57 % removal of NH4+-N, PO43--P, and phenol, respectively. The results showed that the bioreactor removed PO43--P by biomineralization and co-precipitation. Phenol removal relied on a Fenton-like reaction achieved by CMP-induced quinone redox cycling. High-throughput sequencing analysis and functional gene prediction indicated that Pseudomonas was the dominant genus and that the bioreactor had much potential for nitrogen removal, respectively. In addition, phenol affected the performance of functional genes and the associated enzymes, which influenced the nitrogen metabolism process in the bioreactor. This work serves as a guideline for the development of more stable and sustainable composite pollution removal technologies and fungal-bacterial symbiotic systems.


Assuntos
Desnitrificação , Microbiota , Nitrificação , Amônia , Águas Residuárias , Fósforo , Eliminação de Resíduos Líquidos/métodos , Fenol , Reatores Biológicos , Pseudomonas/metabolismo , Nitrogênio/metabolismo
4.
Bioresour Technol ; 409: 131235, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39121511

RESUMO

Manganese(IV) (Mn(IV)) reduction coupled to anaerobic ammonium (NH4+-N) oxidation (Mnammox) is a recently identified metal oxide-mediated nitrogen (N) loss pathway, holding potential value for the efficient removal of NH4+-N from wastewater. However, little is known about the application of Mnammox in wastewater treatment. Here, a novel Mnammox bacterium Aromatoleum evansii (strain MAY27) was screened. Strain MAY27 can utilize MnO2 as an electron acceptor to achieve NH4+-N removal under a low C/N condition (C/N = 0.5). The influencing factors in the Mnammox process and the Mn(IV) reduction driving effect on NH4+-N oxidation were investigated. The physiological characteristics of strain MAY27 and differential metabolic pathways were identified through whole-genome sequencing and metabolomic analyses. A significant up-regulation of several key pathways upon the addition of MnO2, including glycolysis/gluconeogenesis, transmembrane transporter activity, and oxidoreductase activity. This study contributes to the advancement of biotechnological approaches for treating N-containing wastewater.


Assuntos
Compostos de Amônio , Manganês , Metabolômica , Oxirredução , Manganês/metabolismo , Compostos de Amônio/metabolismo , Águas Residuárias/química , Nitrogênio/metabolismo , Rhodobacteraceae/metabolismo , Óxidos/química
5.
J Hazard Mater ; 479: 135748, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243540

RESUMO

A novel nitrate-dependent manganese (Mn) redox strain was isolated and identified as Dechloromonas sp.YZ8 in this study. The growth conditions of strain YZ8 were optimized by kinetic experiments. The nitrate (NO3--N) removal efficiency was 100.0 % at 16 h at C/N of 2.0, pH of 7.0, and Mn(II) or Mn(IV) addition of 10.0 or 500.0 mg L-1, along with an excellent Mn redox capacity. Transmission electron microscopy supported the Mn redox process inside and outside the cells of strain YZ8. When strain YZ8 was exposed to different concentrations of copper ion (Cu(II)), it turned out that moderate amounts of Cu(II) increased microbial activity and metabolic activities. Moreover, it was discovered that the appropriate amount of Cu(II) promoted the conversion of Mn(IV) and Mn(II) to Mn(III) and improved electron transfer capacity in the Mn redox system, especially the Mn redox process dominated by Mn(IV) reduction. Then, δ-MnO2 and bio-manganese oxides (BMO) produced during the reaction process have strong adsorption of Cu(II). The surface valence changes of δ-MnO2 before and after the reaction and the production of BMO, Mn(III)-rich intermediate black manganese ore (Mn3O4), and Mn secondary minerals together confirmed the Mn redox pathway. The study provided new insights into the promotion mechanism and immobilization effects of redox-coupled denitrification of Mn in groundwater under Cu(II) stress.


Assuntos
Cobre , Desnitrificação , Manganês , Nitratos , Oxirredução , Cobre/química , Desnitrificação/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/química , Manganês/química , Manganês/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Rhodocyclaceae/metabolismo , Biodegradação Ambiental
6.
Bioresour Technol ; 407: 131106, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004108

RESUMO

The manganese(Mn) redox cycling system in this work was created by combining Mn(IV)-reducing bacteria MFG10 with Mn(II)-oxidizing bacteria HY129. The biomanganese oxides (BMO) generated by strain HY129 were transformed by strain MFG10 to Mn(II), finishing the Mn redox cycling, in which nitrate (NO3--N) was converted to nitrite, which was further reduced to nitrogen gas. The system could achieve 85.7 % and 98.8 % elimination efficiencies of Mn(ⅠⅠ) and NO3--N, respectively, at Mn(ⅠⅠ) = 20.0 mg/L, C/N = 2.0, pH = 6.5, and NO3--N = 16.0 mg/L. The removal of bisphenol A (BPA) and zinc (Zn(II)) at 36 h reached 91.7 % and 89.7 % under the optimal condition, respectively. Furthermore, the Mn redox cycling system can reinforce the metabolic activity and electron transfer activity of microorganisms. The findings showed that the adsorption by bioprecipitation throughout the Mn cycling was responsible for the elimination of Zn(II) and BPA.


Assuntos
Compostos Benzidrílicos , Manganês , Nitratos , Oxirredução , Fenóis , Zinco , Manganês/metabolismo , Compostos Benzidrílicos/metabolismo , Zinco/metabolismo , Zinco/química , Nitratos/metabolismo , Fenóis/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Stem Cells Transl Med ; 13(1): 83-99, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37935630

RESUMO

Cone cell death is a characteristic shared by various retinal degenerative disorders, such as cone-rod dystrophy, Stargardt disease, achromatopsia, and retinitis pigmentosa. This leads to conditions like color blindness and permanently impaired visual acuity. Stem cell therapy focused on photoreceptor replacement holds promise for addressing these conditions. However, identifying surface markers that aid in enriching retinal progenitor cells (RPCs) capable of differentiating into cones remains a complex task. In this study, we employed single-cell RNA sequencing to scrutinize the transcriptome of developing retinas in C57BL/6J mice. This revealed the distinctive expression of somatostatin receptor 2 (Sstr2), a surface protein, in late-stage RPCs exhibiting the potential for photoreceptor differentiation. In vivo lineage tracing experiments verified that Sstr2+ cells within the late embryonic retina gave rise to cones, amacrine and horizontal cells during the developmental process. Furthermore, Sstr2+ cells that were isolated from the late embryonic mouse retina displayed RPC markers and exhibited the capability to differentiate into cones in vitro. Upon subretinal transplantation into both wild-type and retinal degeneration 10 (rd10) mice, Sstr2+ cells survived and expressed cone-specific markers. This study underscores the ability of Sstr2 to enrich late-stage RPCs primed for cone differentiation to a large extent. It proposes the utility of Sstr2 as a biomarker for RPCs capable of generating cones for transplantation purposes.


Assuntos
Receptores de Somatostatina , Retina , Degeneração Retiniana , Animais , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , Células-Tronco
8.
J Hazard Mater ; 475: 134922, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885589

RESUMO

Effective treatment of industrial wastewater containing complex pollutants, such as nitrate (NO3--N) and organic pollutants, remains a significant challenge to date. Here, a strain Nocardioides sp. ZS2 with denitrification and degradation of p-nitrophenol (PNP) was isolated and its culture conditions were optimized by kinetic analysis. Hydrophilic sponge carriers were prepared using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and chitosan (CS) to construct bioreactors. Furthermore, to further enhance the PNP degradation and denitrification performance of bioreactors, Pseudomonas stutzeri GF2 with denitrification capability was introduced. The results revealed that the removal efficiencies of PNP and NO3--N reached 97.9 % and 91.9 %, respectively, when hydraulic retention time (HRT) of 6 h, C/N of 2.0, and pH of 6.5. The bioreactor exhibited stable denitrification performance even with fluctuations in the influent PNP concentration. The potential functional prediction results revealed that the abundance of amino acids, fatty acids, and carbohydrates increased as the influent C/N decreased, reflecting a tendency of the microbial community to adjust carbon source utilization to maintain cell growth, metabolic balance, and resist adverse C/N environments. This research provides new insights into the effective removal of organic pollutants and NO3--N in wastewater treatment.


Assuntos
Reatores Biológicos , Desnitrificação , Interações Hidrofóbicas e Hidrofílicas , Nitrofenóis , Poluentes Químicos da Água , Nitrofenóis/metabolismo , Nitrofenóis/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Quitosana/química , Pseudomonas stutzeri/metabolismo , Álcool de Polivinil/química , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/metabolismo , Biodegradação Ambiental , Nitratos/metabolismo , Águas Residuárias/química , Actinobacteria/metabolismo , Eliminação de Resíduos Líquidos/métodos
9.
Bioresour Technol ; 409: 131256, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127357

RESUMO

Autotrophic denitrification technology has gained increasing attention in recent years owing to its effectiveness, economical, and environmentally friendly nature. However, the sluggish reaction rate has emerged as the primary impediment to its widespread application. Herein, a bio-enhanced autotrophic denitrification reactor with modified loofah sponge (LS) immobilized microorganisms was established to achieve efficient denitrification. Under autotrophic conditions, a nitrate removal efficiency of 59.55 % (0.642 mg/L/h) and a manganese removal efficiency of 86.48 % were achieved after bio-enhance, which increased by 20.92 % and 36.34 %. The bioreactor achieved optimal performance with denitrification and manganese removal efficiencies of 99.84 % (1.09 mg/L/h) and 91.88 %. ETSA and 3D-EEM analysis reveled manganese promoting electron transfer and metabolic activity of microorganisms. High-throughput sequencing results revealed as the increase of Mn(II) concentration, Cupriavidus became one of the dominant strains in the reactor. Prediction of metabolic functions results proved the great potential for Mn(II)-autotrophic denitrification of LS bioreactor.


Assuntos
Reatores Biológicos , Desnitrificação , Manganês , Reatores Biológicos/microbiologia , Desnitrificação/fisiologia , Manganês/metabolismo , Nitratos/metabolismo , Processos Autotróficos , Bactérias/metabolismo , Biodiversidade
10.
Bioresour Technol ; 399: 130567, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467263

RESUMO

The removal of complex pollutants from oligotrophic water is an important challenge for researchers. In this study, the HCl-modified loofah sponge crosslinked polyethyleneimine loaded with biochar (LS/PEI@biochar) biofilm reactor was adapted to achieve efficient removal of complex pollutants in oligotrophic water. On the 35 d, the average removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), calcium (Ca2+), and phosphate (PO43--P) in water was 51, 95, 81, and 77 %, respectively. Additionally, it effectively used a low molecular weight carbon source. Scanning electron microscopy (SEM) results showed that the LS/PEI@biochar biocarrier had superior biofilm suspension performance. Meanwhile, analysis of the biocrystals confirmed Ca2+ and PO43- removal through the generation of CaCO3 (calcite and vaterite) and Ca5(PO4)3OH. This study demonstrated that the system has great efficiency and application prospect in treating oligotrophic water on the laboratory scale, and will be further validated for practical application on large-scale oligotrophic water.


Assuntos
Carvão Vegetal , Luffa , Poluentes Químicos da Água , Polietilenoimina , Água , Biofilmes , Carbonato de Cálcio , Nitrogênio/química , Poluentes Químicos da Água/análise
11.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473628

RESUMO

Crevice corrosion (CC) behavior of 201 stainless steel (SS) in 1 M NaCl + x M HCl/y M NaOH solutions with various pH was investigated using SECM and optical microscopic observations. Results show that the CC was initiated by the decrease in pH value within the crevice. The pH value near the crevice mouth falls rapidly to 1.38 in the first 2 h in the strongly acidic solution, while the pH value was observed to rise firstly and then decrease in the neutral and alkaline solutions. It indicates there is no incubation phase in the CC evolution of 201-SS in a pH = 2.00 solution, while an incubation phase was observed in pH = 7.00 and 11.00 solutions. Additionally, there appeared to be a radial pH variation within the gap over time. The pH value is the lowest at the gap mouth, which is in line with the in situ optical observation result that the severely corroded region is at the mouth of the gap. The decrease in pH value inside results in the negative shift of open circuit potential (OCP) and the initiation of CC of 201-SS. The increased anodic dissolution rate in the acidic solution accelerates the breakdown of passive film inside, reducing the initiation time and stimulating the spread of CC.

12.
Biomolecules ; 14(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39334918

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has filled a gap in our knowledge regarding the prevention of CoVs. Swine coronavirus (CoV) is a significant pathogen that causes huge economic losses to the global swine industry. Until now, anti-CoV prevention and control have been challenging due to the rapidly generated variants. Silver nanoparticles (AgNPs) with excellent antimicrobial activity have attracted great interest for biosafety prevention and control applications. In this study, we synthesized chitosan-modified AgNPs (Chi-AgNPs) with good biocompatibility to investigate their antiviral effects on swine CoVs. In vitro assays showed that Chi-AgNPs could significantly impaired viral entry. The direct interaction between Chi-AgNPs and CoVs can destroy the viral surface spike (S) protein secondary structure associated with viral membrane fusion, which is caused by the cleavage of disulfide bonds in the S protein. Moreover, the mechanism showed that Chi-AgNPs reduced the virus-induced apoptosis of Vero cells via the ROS/p53 signaling activation pathway. Our data suggest that Chi-AgNPs can serve as a preventive strategy for CoVs infection and provide a molecular basis for the viricidal effect of Chi-AgNPs on CoVs.


Assuntos
Antivirais , Quitosana , Nanopartículas Metálicas , Prata , Glicoproteína da Espícula de Coronavírus , Animais , Quitosana/química , Quitosana/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Nanopartículas Metálicas/química , Chlorocebus aethiops , Prata/química , Prata/farmacologia , Células Vero , Antivirais/farmacologia , Antivirais/química , Suínos , Apoptose/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , COVID-19/virologia , COVID-19/prevenção & controle
13.
Chemosphere ; 350: 141156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211799

RESUMO

The co-existence of heavy metals and nitrate (NO3--N) pollutants in wastewater has been a persistent global concern for a long time. A strain LYF26, which can remove NO3--N, calcium (Ca(II)), and cadmium (Cd(II)) simultaneously, was isolated to explore the properties and mechanisms of synergistic contaminants removal. Different conditions (Cd(II) and Ca(II) concentrations and pH) were optimized by Zero-, Half-, and First-order kinetic analyses to explore the environmental parameters for the optimal effect of strain LYF26. Results of the kinetic analyses revealed that the optimal culture conditions for strain LYF26 were pH of 6.5, Cd(II) and Ca(II) concentrations of 3.00 and 180.00 mg L-1, accompanied by Ca(II), Cd(II), and NO3--N efficiencies of 53.10%, 90.03%, and 91.45%, respectively. The removal mechanisms of Cd(II) using strain LYF26 as a nucleation template were identified as biomineralization, lattice substitution, and co-precipitation. The differences and changes of dissolved organic matter during metabolism were analyzed and the results demonstrated that besides the involvement of extracellular polymeric substances in the precipitation of Cd(II) and Ca(II), the high content of humic acid-like species revealed a remarkable contribution to the denitrification process. This study is hopeful to contribute a theory for further developing microbially induced calcium precipitation used to treat complex polluted wastewater.


Assuntos
Cádmio , Nitratos , Cádmio/metabolismo , Nitratos/metabolismo , Cálcio , Cinética , Pseudomonas/metabolismo , Águas Residuárias , Desnitrificação , Cálcio da Dieta
14.
Talanta ; 274: 126026, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604039

RESUMO

Tracking the variation of Cl- timely within the crevice is of great significance for comprehending the dynamic mechanism of crevice corrosion. The reported chloride ion selective electrodes are difficult to realize the long-time Cl- detection inside the confined crevice, due to their millimeter size or a relative limited lifespan. For this purpose, an Ag/AgCl ultra-micro sensor (UMS) with a radius of 12.5 µm was fabricated and optimized using laser drawing and electrodeposition techniques. Results show the AgCl film's structure is significantly impacted by the deposited current density, and further affects the linear response, life span and stability of Ag/AgCl UMS. The UMS prepared at current density of 0.1 mA/cm2 for 2 h shows a rapid response (several seconds), excellent stability and reproducibility, strong acid/alkali tolerance, sufficient linearity (R2 > 0.99), and long lifespan (86 days). Moreover, combined with the potentiometric mode of scanning electrochemical microscope (SECM), the Ag/AgCl UMS was successfully applied to monitor the in-situ radial Cl- concentration in micro-regions inside a 100 µm gap of stainless steel. The findings demonstrated that there was obvious radial difference in Cl- concentration inside the crevice, where the fastest rise in Cl- concentration was at the opening. The proposed method which combines the UMS with SECM has attractive practical applications for microzone Cl- monitoring in real time inside crevice. It may further promote the study of other localized corrosion mechanism and the development of microzone ions detection method.

15.
Bioresour Technol ; 367: 128282, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368483

RESUMO

The application of bio-manganese (Mn) redox cycling for continuous removal of contaminants provides promise for addressing coexisting contaminants in groundwater, however, the feasibility of constructing Mn redox cycling system (MCS) through community assembly remains to be elucidated. In this study, Mn-reducing strain MFG10 and Mn-oxidizing strain MFQ7 synergistically removed 94.67 % of 17ß-estradiol (E2) within 12 h. Analysis of potential variations in Mn oxides suggested that MCS accelerated the production of reactive oxygen species (ROS) and Mn(III), which interacted to promote E2 removal. After continuous operation of the Mn ore-based immobilized bioreactor for 270 days, the experimental group (EG) achieved average removal efficiencies of 89.63 % and 97.57 % for NO3--N and E2, respectively. High-throughput sequencing results revealed complex symbiotic relationships in EG. Community assembly significantly enhanced the metabolic and physiological activity of the bioreactor, which promoting the expression of core functions including nitrogen metabolism, Mn cycling and organic matter resistance.


Assuntos
Manganês , Nitratos , Reatores Biológicos , Oxirredução , Estradiol , Óxidos de Nitrogênio
16.
Sci Total Environ ; 810: 151185, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699810

RESUMO

The technologies for groundwater nitrate pollution treatment have drawn increasing global attention. As for autotrophic denitrification (AD), most researches aimed to the mixed microbial culture bioreactors, the mechanism of AD by purely cultured bacteria has not been fully investigated yet. Here, denitrification ability, bacterial activity, and dissolved organic matter evolution of Cupriavidus sp. HY129 in both AD and heterotrophic denitrification (HD) were studied. Genomic analysis and microbial metabolomic analysis were applied to explore the mechanism of AD and the difference and intrinsic factors in AD and HD. The results revealed that HD resulted in higher denitrification efficiency and biomass compared to AD and the bacteria preferred to synthesize humic-like proteins to maintain the progress of AD. Bacteria carry out Mn oxidation outside the bacteria cell and transfer electrons into the cell for AD. Cupriavidus sp. HY129 genome has critical metabolic pathways in both autotrophic and heterotrophic conditions, as well as the MCO gene for mediating the Mn oxidation. Energy metabolism pathways were the most significantly differences between AD and HD. Moreover, sphingolipid metabolism and mineral absorption metabolism were the most essential pathways in the autotrophic process to maintain the normal physiological activities and Mn transfer. The results explored the differences between AD and HD pathways in the same bacteria for the first time and provided new insight into understanding the metabolic characteristics of different denitrification, which provide useful information to the global nitrogen cycle and nitrate pollution treatment.


Assuntos
Desnitrificação , Matéria Orgânica Dissolvida , Processos Autotróficos , Reatores Biológicos , Genômica , Metabolômica , Nitratos , Nitrogênio
17.
Environ Pollut ; 299: 118896, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085648

RESUMO

The coexistence of nitrate and endocrine substances (EDCs) in groundwater is of global concern. Herein, an efficient and stable polypyrrole@corn cob (PPy@Corn cob) bioreactor immobilized with Zoogloea sp. was designed for the simultaneous removal of 17ß-estradiol (E2), nitrate and Mn(II). After 225 days of continuous operation, the optimal operating parameters and enhanced removal mechanism were explored, also the long-term toxicity and microbial communities response mechanisms under E2 stress were comprehensively evaluated. The results showed that the removal efficiencies of E2, nitrate, and Mn(II) were 84.21, 82.96, and 47.91%, respectively, at the optimal operating conditions with hydraulic retention time (HRT) of 8 h, pH of 6.5 and Mn(II) concentration of 20 mg L-1. Further increased of initial E2 (2 and 3 mg L-1) resulted in the inhibiting effect of denitrification and manganese oxidation, but excellent E2 removal efficiencies maintained, which were associated with the formation and continuous accumulation of biomanganese oxides (BMO). Characterization analysis of biological precipitation demonstrated that adsorption and redox conversion on the BMO surface played key roles in the removal of E2. In addition, different levels of E2 exposure are decisive factors in community evolution, and bioaugmented bacterial communities with Zoogloea as the core group can dynamically adapt to E2 stress. This study offers the possibility to better utilize microbial metabolism and to advance opportunities that depend on microbial physiology and material characterization applications.


Assuntos
Microbiota , Nitratos , Reatores Biológicos , Desnitrificação , Estradiol , Polímeros , Pirróis , Zea mays
18.
Bioresour Technol ; 355: 127278, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35545210

RESUMO

In this study, the manganese (Mn) reduction-coupled denitrification strategy of dissimilatory Mn reducing bacteria was insightfully investigated. Different parameters (MnO2 level, pH, and temperature) were optimized by kinetic fitting to improve denitrification and Mn reduction effects. The 300 mg L-1 MnO2 addition achieved 98.72% NO3--N removal in 12 h, which was 54.62% higher than blank group without MnO2. Scale-up studies showed that the metabolic activity of the bacteria was effectively enhanced by the addition of MnO2. Besides the deepening of humification in the system, tryptophan-like protein and polysaccharide as potential electron donor precursors revealed remarkable contributions to the extracellular secretion-dependent denitrification process of DMRB. The effect of EPS on Mn reduction depends mainly on the capture of MnO2 by the LB-EPS layer versus its dissolution in the TB-EPS layer. Ultimately, the EPS possess a dual effect of accelerated denitrification and Mn reduction efficiency due to the enhanced EET process.


Assuntos
Compostos de Manganês , Pantoea , Desnitrificação , Manganês , Oxirredução , Óxidos
19.
Bioresour Technol ; 364: 128017, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174388

RESUMO

When bioremediation is applied to Cr(VI) and NO3--N contaminated groundwater, the lack of carbon sources and weak physiological activity dramatically affect the treatment efficacy. Hence, a bioreactor consisting of cellulose degradation-manganese (Mn) cycling bilayer carrier and two core strains was established. After 270 operating days, the experimental group (EG) achieved 96.34 and 95.37% of NO3--N and Cr(VI) removal efficiency, respectively. When the C/N ratio was reduced to 1.0, cellulose-degrading strain CDZ9 produced significantly hydrolyzed cellulose from the corn cob substrate. Meanwhile, the balance between microbial metabolic activity and carbon supply was manipulated by the dissimilatory Mn-reducing strain MFG10. Dissolved organic matter response in EG provided evidence for enhanced carbon utilization and electron transfer processes. The syntrophic relationship between EG core strains significantly enhanced bioreactor metabolism and bioactivity. It drove the coupling of different elemental cycles with contaminant removal including carbon metabolism, nitrogen metabolism, Mn cycle and Cr(VI) reduction.

20.
Bioresour Technol ; 348: 126818, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35139430

RESUMO

Water pollutants, such as nitrate, heavy metals, and organics have attracted attention due to their harms to environmental and biological health. A novel polyvinyl alcohol/sodium alginate with biochar (PVA/SA@biochar) gel beads immobilized bioreactor was established to remove nitrate, manganese, and phenol. The optimum conditions for preparing gel beads were studied by response surface methodology (RSM). Notably, the removal efficiencies of nitrate, Mn(II), and phenol were 94.64, 72.74, and 93.97% at C/N of 2.0; the concentrations of Mn(II) and phenol were 20 and 1 mg L-1, respectively. Moreover, addition of different concentrations of phenol significantly affected the components of dissolved organic matter, bacterial activity, and bioreactor performance. The biological manganese oxide (BMO) with three-dimensional petal-type structure produced during Mn(II) oxidation showed excellent adsorption capacity. The removal of phenol relied on a combination of biological action and adsorption processes. High-throughput analysis showed that Zoogloea sp. was the predominant bacterial group.


Assuntos
Nitratos , Álcool de Polivinil , Alginatos , Reatores Biológicos , Carvão Vegetal , Desnitrificação , Manganês , Fenol , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA