Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(26): e2311391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233208

RESUMO

Guided by a superb dual-ions cosubstitution strategy, two novel, highly optically anisotropic hybrid bismuth halides are designed and synthesized. The first compound, Gu3Bi2NO3Cl8 (Gu = C(NH2)3), is developed using the 2D perovskite halide Cs3Bi2Cl9 as the maternal structure. This involved substituting all Cs+ cations with organic Gu+ and replacing some Cl- anions with [NO3]-. Further substitution of Cl- with additional [NO3]- resulted in the formation of nitrate-rich Gu2Bi(NO3)3Cl2 crystal, exhibiting a 3.4-fold increase in [NO3]- per unit volume. Both compounds have a structurally 0D nature, comprising bismuth-centered polyhedra formed by coordinated chlorides and monodentate/bidentate nitrate moieties, with Gu+ serving as a separator and linker. Notably, the presence of superb optically anisotropic dual-ions, i.e., planar Gu+ and [NO3]-, enables these crystals to possess sharply enhanced optical anisotropy, with birefringence values more than 1 order of magnitude higher than that of the initial crystal Cs3Bi2Cl9 (0.162/0.186vs 0.011 at 546 nm). The discovery and characterization of Gu3Bi2NO3Cl8 and Gu2Bi(NO3)3Cl2 crystals provide new insights into achieving expected modifications in optical properties through the utilization of a dual-ions cosubstitution strategy.

2.
Opt Express ; 32(4): 6178-6189, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439327

RESUMO

In this paper, the circular Airy derivative beams carrying rotationally-symmetric power-exponent-phase vortices are proposed for the first time, whose evolutionary properties are explored by theoretical analysis as well as experimental verification. The intensity and phase distributions of this kind of beam can be flexibly modulated by controlling its parameters such as derivative order, topological charge, and power order. Intriguingly, the evolution of such beams with different fractional topological charges is also investigated in detail by means of phase singularities distribution. In addition, from the perspective of transverse gradient force, the proposed beam is capable of efficiently protecting the trapped Rayleigh particles located at the beam center from the impact by surrounding particles. Furthermore, the beam width, orbital angular momentum (OAM) density and spiral spectrum are also compared and analyzed under different beam parameters. The proposed beams are expected to be useful for extending applications of optical vortices and autofocusing beam, especially for multi-regional particle gathering and central particle protecting.

3.
Opt Express ; 32(9): 15460-15471, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859195

RESUMO

In this paper, we firstly propose a method to measure the topological charges (TCs) of a circular Bessel Gaussian beam with multiple vortex singularities (CBGBMVS) by utilizing cross phase. Based on theory and experiment, the cross phase is utilized to realize the TCs measurement of the CBGBMVS in free space with different situations, such as different singularity number, TCs and singularity location. Especially, the TCs measurement method is also investigated and verified in atmosphere turbulence. Our work provides an effective and convenient way to realize the TCs measurement of multiple singularities embedded in abruptly autofocusing host beams which has plenty of potential application in optical communication.

4.
Opt Lett ; 49(3): 494-497, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300042

RESUMO

We demonstrate a tunable and fully enclosed fiber-based Bessel beam generator that has the potential for applications in a tough environment. This generator consists of a few-mode fiber (FMF), a short section of graded index fiber (GIF), and a 3D-printed helical axicon. The FMF provides tunable modes that carry an orbital angular momentum (OAM). The GIF was fused to the FMF to expand and collimate the generated modes. The helical axicon was 3D-printed on the GIF tip without any holes or gaps, which reshapes the OAM modes into Bessel modes and adds an additional helical phase structure to them, resulting in the generation of zeroth-order, first-order, and second-order Bessel beams. The fully enclosed structure provides high mechanical strength and optical stability, which enable the generator to be suitable for imaging or particle manipulation in a complex liquid or air environment.

5.
PLoS Biol ; 19(12): e3001496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928937

RESUMO

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel's pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs' control of cellular Mg2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Ciclinas/fisiologia , Células HEK293 , Humanos , Magnésio/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
6.
Inorg Chem ; 63(7): 3578-3585, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315816

RESUMO

A new guanidinium-templated vanadate, [C(NH2)3]3VO4·2H2O, has been synthesized in a phase-pure form. It crystallizes in a noncentrosymmetric polar space group, Cc, and the crystal structure is built upon a framework of guanidinium, vanadate tetrahedra, and water molecules linked by hydrogen bonds. Notably, optical measurements reveal that the material exhibits an approximately 9.6-fold enhancement in second-harmonic generation efficiency compared to its phosphate analogue. The enhancement can be attributed to the increased geometrical distortion of the VO4 tetrahedra. Furthermore, we found that the coordination number of the central vanadium atom significantly affects the optical band gaps. Among various coordination numbers, the 4-coordinate VO4 tetrahedra are found to be more favorable for widening the optical band gap of materials compared to the 5- and 6-coordinate vanadium polyhedra, as demonstrated by this work.

7.
Inorg Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961705

RESUMO

Two new Bi(III)-based sulfates, namely, Bi(SO4)F·H2O (BSOF) and Bi(SO4)(NO3)·3H2O (BSNO), have been successfully synthesized through aliovalent replacement of partial [SO4]2- groups with F- and [NO3]- anions, respectively, in the parent structure of Bi2(SO4)3. Such chemical replacement altered the coordination environment of Bi3+ cations, facilitating changes in the structure and optical properties. Notably, the birefringence values of BSOF and BSNO are found to be 4.4 and 15.5 times that of parent Bi2(SO4)3. Further investigation into the structure-property relationship revealed that the birefringence enhancement in BSOF and BSNO is attributed to the improvement of the polarizability anisotropy of Bi3+-centered polyhedra in BSOF and BSNO compared to that of Bi2(SO4)3. In addition, the existence and optimized arrangement of planar [NO3]- groups are also indispensable for further birefringence improvement of the BSNO compound.

8.
Angew Chem Int Ed Engl ; 63(4): e202315311, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888616

RESUMO

Sulfate crystals typically exhibit minimal optical anisotropy due to the near-zero polarizability anisotropy (δ) of [SO4 ]2- tetrahedra, arising from highly symmetrical electron clouds. Recent research sought to enhance δ via chemical modifications, such as fluorination. However, the resultant crystals often maintain subpar optical anisotropy, frequently with birefringence values below 0.1. In this study, we have uncovered that δ can be significantly strengthened by chemically tailoring the tetrahedral [SO4 ]2- with anisotropic π-conjugated modules. This has been demonstrated by several newly proposed S-O-Org (Org: π-conjugated organic species) moieties, which show a sharp increase in δ based on theoretical computations. To further validate this experimentally, we synthesized and characterized six new 3-pyridinesulfonate crystals with the formula A(3-C5 H4 NSO3 ) ⋅ xH2 O (A=Li, Ag, K, Rb, Cs, and NH4 ; x=0 and 1). Notably, these materials exhibit strong optical anisotropy, with birefringence values ranging from 0.240 to 0.312 at 546 nm. These values are approximately 23 to 145.5 times greater than those of corresponding sulfates, and they outperform a vast number of sulfate-related optical materials, thus verifying the effectiveness of the proposed strategy. Furthermore, the title compounds exhibit diverse microstructure peculiarities influenced by the size and binding natures of the counter cations.

9.
Small ; 19(28): e2301756, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36970809

RESUMO

Two melamine-based metal halides, (C3 N6 H7 )(C3 N6 H6 )HgCl3 (I) and (C3 N6 H7 )3 HgCl5 (II), are synthesized by incorporating the heavy d10 cation, Hg2+ , and the halide anion, Cl- . The noncentrosymmetric structure of I results from two unique attributes: large asymmetric secondary building units produced by direct covalent coordination of melamine to Hg2+ and a small dihedral angle between melamine molecules. The former makes inorganic modules locally acentric, while the latter prevents planar organic groups from forming deleterious antiparallel arrangement. The unique coordination in I results in an enlarged band gap of 4.40 eV. Due to the large polarizability of the heavy Hg2+ cation and the π-conjugated system of melamine, I exhibits a strong second-harmonic generation efficiency of 5 × KH2 PO4 , larger than any reported melamine-based nonlinear optical materials to date. Density functional theory calculations indicate that I possesses giant optical anisotropy, with a birefringence of 0.246@1064 nm.

10.
Small ; 19(19): e2207709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36759968

RESUMO

Establishing high performance ultraviolet (UV) nonlinear optical (NLO) selenite crystals with well-balanced properties is very challenging attributable to their strong absorption for UV light. Here a rare-earth selenite, Sc(HSeO3 )3 , with excellent UV NLO properties is introduced. Sc(HSeO3 )3 crystallizing in the polar NCS space group, Cc, features a 3D archetiture built up by interconnected ScO6 octahedra and HSeO3 groups. The crystal exhibits remarkably well-balanced UV-NLO functionality, namely, the shortest absorption edge (214 nm) among NLO-active selenites, wide bandgap (5.28 eV), large phase-matchable SHG response (5 × KDP), and sufficiently large birefringence (cal. 0.105 @1064 nm). Detailed DFT calculations have been performed to elucidate the structure-property relationships. This work provides a new example of discovering novel UV NLO selenite materials.

11.
Opt Express ; 31(7): 11053-11066, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155749

RESUMO

In this paper, we investigate the nonparaxial propagation dynamics of the chirped circular Airy derivative beams (CCADBs) based on vector angular spectrum method. In the case of nonparaxial propagation, the CCADBs still maintains excellent autofocusing performances. Derivative order and chirp factor are two important physical quantities of the CCADBs to regulate the nonparaxial propagation characteristics, such as focal length, focal depth and K-value. In the nonparaxial propagation model, the radiation force on a Rayleigh microsphere induced the CCADBs are also analyzed and discussed in detail. The results demonstrate that not all derivative order CCADBs can achieve stable microsphere trapping effect. The derivative order and chirp factor of the beam can be used to coarse and fine tune the capture effect of Rayleigh microsphere, respectively. This work will contribute to the more precise and flexible use of circular Airy derivative beams in optical manipulation, biomedical treatment and so on.

12.
Opt Lett ; 48(9): 2233-2236, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126242

RESUMO

A tunable mode convertor is experimentally demonstrated based on a fiber Bragg grating (FBG), which is fabricated in a graded-index nine-mode fiber by using a femtosecond laser. Nine linearly polarized (LP) modes were excited and the coupling efficiency of them can reach 90%. By adjusting the polarization controller, the ±1st-, ±2nd-, ±3rd-, and ±4th-order orbital angular momentum (OAM) modes were excited, which means the OAM tuning of 0-±1ℏ, 0-±2ℏ, 0-±3ℏ, and 0-±4ℏ were achieved. LP21/LP02, LP31/LP12, LP41/LP22/LP03 modes were successfully tuned at 1556.00 nm, 1555.10 nm, and 1554.25 nm by twisting the FBG, respectively. Moreover, combined with polarization and torsion control, the tuning between 0th- and -2nd-order OAM has been realized, which is converted from the tuning between LP02 and LP21. By using this method, the OAM tuning of ±1-±3ℏ and ±4-0-±2ℏ may be further realized theoretically.

13.
Opt Express ; 30(12): 21085-21093, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224837

RESUMO

We demonstrate a class of all-fiber torsion-tunable orbital angular momentum (OAM) mode generators based on oxyhydrogen-flame fabricated helical long-period fiber gratings (HLPFGs). The 1-order and 3-order OAM modes are excited based on the HLPFGs inscribed in the single-mode fiber (SMF) and six-mode fiber (6MF), respectively. Theoretical analysis reveals that the twisting can result a resonant wavelength shift of the HLPFG, which means that the OAM modes can also be excited at various wavelength by simply applying a twist rate on the HLPFG. Experiments are carried out to characterize the torsional tunability of the OAM modes, and the results show that the 1-order and 3-order OAM modes can be excited at various wavelength of ∼1564 - 1585 nm and ∼1552 - 1574 nm, respectively, when the torsion angle varied from -360° to 360°, which is consistent with the theoretical analysis. Therefore, the HLPFG can be a candidate for all-fiber wavelength tunable OAM mode generator.

14.
Opt Express ; 30(3): 4402-4411, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209678

RESUMO

A method employing femtosecond lasers to inscribe helical long period fiber grating (HLPFG) for exciting orbital angular momentum (OAM) of light is experimentally demonstrated. In this method, the refractive index modulation (RIM) of HLPFG is realized by three-dimensional translation of a fiber without rotation, indicating better stability, repeatability and flexibility. The coupling efficiency can be customized by varying the radius of the helical RIM, except laser energy. The characteristics of phase and polarization purity of the coupled modes in HLPFGs are studied. Results show that HLPFGs can directly excite OAM modes, the polarization state and helical phase of the mode can be adjusted independently, and the purity is the highest at resonant wavelength, over 91%.

15.
Opt Express ; 30(16): 28745-28751, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299063

RESUMO

We experimentally demonstrated an all-fiber reflective orbital angular momentum (OAM) generator based on orthogonal fiber Bragg grating (OFBG). The OFBG is formed by using a femtosecond laser to prepare two fiber Bragg gratings with a certain spacing in orthogonal planes. The ±1st- and ±2nd-order OAM modes were directly excited in this OFBG, and the chirality of the OAM modes depends on the relative positions of the two FBGs. The mode coupling properties and effects of center-to-center distance on OAM modes were investigated as well.

16.
Opt Lett ; 47(10): 2602-2605, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561411

RESUMO

Precise and accurate measurements of the optical refractive index (RI) for liquids are increasingly finding applications in biochemistry and biomedicine. Here, we demonstrate a dual-resonance helical long-period fiber grating (HLPFG) near the dispersion turning point (DTP), which exhibits an ultrahigh RI sensitivity (∼25546 nm/RIU at ∼1.440). The achieved RI sensitivity is, to the best of our knowledge, more than one order of magnitude higher than a conventional HLPFG. The ultrahigh RI sensitivity can improve the RI measurement precision and accuracy significantly. Furthermore, ultralow wavelength shifts (nearly zero) with temperature and strain ranging from 20 to 100°C and 0 to 2226 µÎµ, respectively, are also demonstrated for the proposed HLPFG, which may be a good candidate for developing new low-cross-talk sensors.


Assuntos
Refratometria , Temperatura
17.
Opt Lett ; 47(21): 5672-5675, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219300

RESUMO

A wave-band-tunable optical fiber broadband orbital angular momentum (OAM) mode converter based on a helical long-period fiber grating (HLPFG) and dispersion turning point (DTP) tuning technique is demonstrated both theoretically and experimentally. The DTP tuning is achieved by thinning the optical fiber during the HLPFG inscription. As a proof of concept, the DTP wavelength of the LP1,5 mode is successfully tuned from the original ∼2.4 µm to ∼2.0 µm and ∼1.7 µm. With the help of the HLPFG, broadband OAM mode conversion (LP0,1→LP1,5) is demonstrated near the 2.0 µm and 1.7 µm wave bands. This work addresses a longstanding problem that the broadband mode conversion is limited by the intrinsic DTP wavelength of the modes and provides a new, to the best of our knowledge, alternative for broadband OAM mode conversion at the desired wave bands.

18.
Opt Lett ; 47(15): 3896-3899, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913341

RESUMO

We propose and demonstrate a multichannel ±2 order orbital angular momentum (OAM) mode converter based on an elliptical-core helical intermediate-period fiber grating (E-HIPFG). By decreasing the grating pitch to ∼17.5 µm, ten wavelength channels are observed in the transmission spectrum of the E-HIPFG. Within the wavelength range of 1240-1650 nm, the ±2 order OAM modes are identified at each wavelength channel. The proposed E-HIPFG is ∼2.6 mm in length, which is more than one order of magnitude shorter than the conventional device, and thus may be more resistant to external disturbances, such as bending. Furthermore, the device exhibits an ultralow temperature drift of ∼5.84 pm/°C. Therefore, the proposed E-HIPFG can be a good candidate for a multichannel higher-order OAM mode converter.

19.
Opt Lett ; 47(20): 5352-5355, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240360

RESUMO

A chiral long period fiber grating (CLPFG) was designed according to the phase-matching condition and conservation law of angular momentum, and was inscribed in a ring core fiber (RCF). This CLPFG was used to directly excite the ±2nd- and ±3rd-order orbital angular momentum (OAM) modes. The coupling efficiency of the OAM mode is up to 98.7% and the insertion loss is within 0.5 dB. The uniformity of the annular mode intensity distribution, polarization characteristics, and the mode purity of coupled OAM modes were investigated in detail. Results show that the coupled high-order OAM modes possess a relative uniform annular intensity distribution, its mode purity is up to 93.2%, and the helical phase modulation is independent on the polarization state of incident light. These results indicate that the RCF-based CLPFG is an ideal OAM mode converter for future high-capacity optical fiber communication systems.

20.
Opt Lett ; 47(24): 6476-6479, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538467

RESUMO

We experimentally demonstrated an all-fiber focused vortex beam (FVB) generator which was prepared by milling a spiral zone plate (SZP) on the Au-coated end face of a hybrid fiber by focused ion beam (FIB). In this generator, the fundamental modes propagating in the hybrid fiber are focused while being modulated into high-order orbital angular momentum (OAM) mode by the SZP at the end face. The focus length and topological charge were designed and then were both theoretically and experimentally verified. The results show that, the obtained characteristics of the FVB agree with the designed ones. The measured diameters of the focal spots are 2.2 µm, 4.4 µm, and 5.2 µm for the FVB with the topological charge of 0, 1, and 2, respectively. The simulated results show that the proposed FVB generators can maintain good focusing characteristics in different liquids, so it is a good candidate for optical fiber spanner use in a complex liquid environment. Moreover, the processing efficiency of the proposed FVB generators is nearly ten times higher than that of the previously reported ones due to the Au-coated film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA