Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340438

RESUMO

Cancer immunotherapy has entered the forefront of cancer treatment, but major challenges still exist, such as the limited proportion of patients that respond to treatment and treatment-related toxicity. Therefore, biomarkers to predict which patients will benefit from therapy without major side effects are of the utmost importance. Moreover, novel therapeutic targets to increase the proportion of responding patients on a given immunotherapy or to alleviate immunotherapy-induced toxicity could be a valuable adjunct to immunotherapy treatment. Host factors such as age, obesity, and the composition of the gut microbiome have considerable effects on immune responses and, hence, could have a large impact on the outcome of immunotherapies. Moreover, since these host factors differ considerably between preclinical mouse models and human cancer patients, it might be possible that these host factors account, in part, for the observed discrepancies in outcomes between mice experiments and clinical trials. In this review, we discuss the latest data on the influence of aging, obesity, and the gut microbiome on the anti-tumor immune response and immunotherapy and propose avenues to increase our knowledge on this topic in order to improve patient selection for cancer immunotherapy treatment.


Assuntos
Envelhecimento/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Microbioma Gastrointestinal/imunologia , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Neoplasias/terapia , Obesidade/terapia , Envelhecimento/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Biomarcadores Farmacológicos/análise , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/microbiologia , Obesidade/genética , Obesidade/imunologia , Obesidade/microbiologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais
2.
Clin Transl Med ; 14(5): e1655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711203

RESUMO

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Assuntos
Leiomiossarcoma , Microambiente Tumoral , Neoplasias Uterinas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Leiomiossarcoma/tratamento farmacológico , Humanos , Feminino , Neoplasias Uterinas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Animais , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
3.
Nat Commun ; 13(1): 4578, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931688

RESUMO

Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.


Assuntos
Neoplasias Ovarianas , Platina , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Platina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/farmacologia , Serina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA