Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(47): 18744-18753, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37220325

RESUMO

Conventional water treatment practices utilizing chemical disinfection, especially chlorination, are considered generally effective in producing microbiologically safe drinking water. However, protozoan pathogens such as oocysts of Cryptosporidium parvum are very resistant to chlorine, which has led to consideration of alternative disinfectants for their control. Free bromine, HOBr, has not been evaluated extensively as an alternative halogen disinfectant for inactivation of Cryptosporidium parvum in drinking water or reclaimed water for non-potable uses. Bromine is a versatile disinfectant consisting of different chemical forms with persistent microbicidal efficacy under varied water quality conditions and is effective against a range of waterborne microbes of health concern. The objectives of this study are to (1) compare the efficacy of free bromine to free chlorine at similar concentrations (as milligrams per liter) for disinfection of Cryptosporidium parvum oocysts, Bacillus atrophaeus spores, and MS2 coliphage in a model buffered water and (2) evaluate the kinetics of inactivation of these microorganisms using appropriate disinfection models. Overall, at a target concentration of ∼5 mg/L, bromine averaged 0.6 log (73.8%) reductions of C. parvum oocyst infectivity after 300 min (CT: 1166 min·mg/L) and produced up to a 0.8 log reduction disinfectant activity. An ∼5.0 mg/L chlorine dose increased oocyst infectivity by only 0.4 log (64%) after 300 min (CT: 895 min·mg/L). Bacillus atrophaeus spores and MS2 coliphage treated with bromine and chlorine were reduced by 4 log10 (99.99%) for both disinfectants over the duration of the experiments.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Desinfetantes , Água Potável , Purificação da Água , Animais , Desinfecção , Cloro/farmacologia , Bromo/farmacologia , Oocistos , Desinfetantes/farmacologia
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674812

RESUMO

The World Health Organization (WHO) reports that two billion people worldwide lack access to safely managed water sources, including 1.2 billion who already have access to improved water sources. In many countries, household point-of-use (POU) water-treatment options are used to remove or deactivate microorganisms in water, but not all POU technologies meet WHO performance requirements to achieve safe drinking water. To improve the effectiveness of POU technologies, the use of multiple treatment barriers should be used as a way to increase overall treatment performance. The focus of this research is to evaluate multiple barrier treatment using chitosan, an organic coagulant−flocculant, to improve microbial and turbidity reductions in combination with sand filtration. Bench-scale intermittently operated sand filters with 16 cm layers of sands of two different grain sizes representing slow and rapid sand filters were dosed daily over 57 days with microbially spiked surface water volumes corresponding to household use. E. coli bacteria and MS2 coliphage virus reductions were quantified biweekly (N = 17) using culture methods. Bacteria and virus removals were significantly improved over sand filtration without chitosan pretreatment (Wilcoxon Rank-Sum, p < 0.05). When water was pretreated at an optimal chitosan dose of 10 mg/L followed by sand filtration, log10 reductions in bacteria and viruses met the two-star WHO performance level of effectiveness. Microbial and turbidity reductions generally improved over the filter operating period but showed no trends with filtration rates.


Assuntos
Quitosana , Água Potável , Vírus , Purificação da Água , Humanos , Escherichia coli , Dióxido de Silício , Purificação da Água/métodos , Bactérias
3.
Appl Environ Microbiol ; 88(12): e0050422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35670583

RESUMO

Multiple pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission have been examined, and the role of contaminated foods as a source of SARS-CoV-2 exposure has been suggested. As many cases of SARS-CoV-2 have been linked to meat processing plants, it may be that conditions in live animal markets and slaughterhouses or meat processing plant procedures transfer viral particles to meat, poultry, and seafood during animal slaughter, processing, storage, or transport. Because of the potential for contamination of foods such as beef, chicken, pork, or fish, the goal of this study was to evaluate the survival of a lipid enveloped RNA bacteriophage, phi 6, as well as two animal coronaviruses, murine hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV), as SARS-CoV-2 surrogates for their survival under various meat and fish cold-storage conditions over 30 days. Viral surrogates differed in survival, depending on food product and temperature, but overall, viruses survived for extended periods of time at high concentrations at both refrigerated and frozen temperatures. The ability of SARS-CoV-2 viral surrogates like Phi 6 and animal coronaviruses to survive for varying extents on some meat and fish products when stored refrigerated or frozen is a significant and concerning finding. Continued efforts are needed to prevent contamination of foods and food processing surfaces, worker hands, and food processing utensils such as knives, and there is a need to better address the lack of or inadequate disinfection of these foods prior to meat packaging. IMPORTANCE The ability of SARS-CoV-2 viral surrogates like Phi 6 and animal coronaviruses to survive for long periods on meat and fish products at cold temperatures emphasizes the need for rigorous and sustained food sanitation and hygiene in the harvest, transport, processing, and distribution of these foods.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , Bovinos , Produtos Pesqueiros , Carne , Camundongos , SARS-CoV-2
5.
Int J Infect Dis ; : 107146, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945434

RESUMO

OBJECTIVE: This study sought to detect and characterize influenza A (IAV) and influenza D (IDV) viruses circulating among commercial birds and shop owners in Pakistan's live bird markets. METHODS: Oropharyngeal swabs (n=600; n=300 pools) collected from poultry and nasopharyngeal swabs (n=240) collected from poultry workers were studied for molecular evidence of IAV and IDV using real-time and conventional RT-PCR protocols. RESULTS: Nineteen (6.3%) poultry pools were positive for IAV and 73.9% of these were positive for H9N2 subtypes. Two (0.83%) poultry workers had evidence of IAV, and both were also H9N2 subtypes. The poultry and human influenza A-positive specimens all clustered phylogenetically by Sanger and next-generation sequencing with previously detected H9N2 poultry isolates. No field specimens were positive for IDV. CONCLUSION: H9N2 IAV is likely enzootic in Punjab Province Pakistan's live bird markets and may be colonizing the noses of workers and market visitors. Regular monitoring for avian influenza-associated human illness in Punjab seems to be a needed public measure.

6.
Influenza Other Respir Viruses ; 17(2): e13111, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36843223

RESUMO

BACKGROUND: Zoonotic influenza surveillance in Myanmar is sparse, despite the risks of introduction of such viruses from neighboring countries that could impact the poultry industry and lead to spillover to humans. METHODS: In July and August 2019, our multi-institutional partnership conducted a One Health-oriented, cross-sectional surveillance (weekly for 3 weeks) for influenza A and influenza D viruses at the three largest live bird markets in Yangon, Myanmar. RESULTS: The 27 bioaerosols, 90 bird cage swabs, 90 bird oropharyngeals, and 90 human nasopharyngeal samples yielded molecular influenza A detections in 8 bioaerosols (30.0%), 16 bird cages (17.8%), 15 bird oropharyngeals (16.7%), and 1 human nasopharyngeal (1.1%) samples. No influenza D was detected. Seven of the influenza A virus detections were found to be subtype A/H9N2, and one human nasopharyngeal sample was found to be subtype A/H1pdm. Among all IAV-positive samples, three of the A/H9N2-positive samples yielded live viruses from egg culture and their whole genome sequences revealing they belonged to the G9/Y280 lineage of A/H9N2 viruses. Phylogenetic analyses showed that these A/H9N2 sequences clustered separately from A/H9N2 viruses that were previously detected in Myanmar, supporting the notion that A/H9N2 viruses similar to those seen in wider Southeast Asia may have been introduced to Myanmar on multiple occasions. CONCLUSIONS: These findings call for increased surveillance efforts in Myanmar to monitor for the introduction of novel influenza viruses in poultry, as well as possible reassortment and zoonotic virus transmission.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Estudos Transversais , Filogenia , Mianmar/epidemiologia , Influenza Humana/epidemiologia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Galinhas
7.
PLoS One ; 17(1): e0262341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061779

RESUMO

The World Health Organization (WHO) estimates 2.1 billion people lack access to safely managed water. Cloth filtration is often employed in rural and developing communities of South Asia for point-of-use water treatment, but bacteria and viruses are too small for efficient removal by this filtration method. Chitosan is a biodegradable, cationic, organic polymer derived from the chemical treatment of chitin that acts as a coagulant and flocculant of contaminant of microbes and other particles in water, thereby facilitating filtration of microbes. This research 1) evaluated the use of chitosan acetate as a pre-treatment coagulation-flocculation process followed by cloth filtration for microbial reductions and 2) assessed floc particle size under three stirring conditions. E. coli KO11 bacteria and MS2 coliphage virus removals were quantified using culture-based methods. Chitosan acetate coagulation-flocculation pre-treatment of water, followed by cloth filtration, met or exceeded the protective (2-star) WHO performance levels for bacteria (2 log10 reduction) and viruses (3 log10 reduction), and filtrate turbidity was consistently reduced to < 1 NTU, meeting United States Environmental Protection Agency (EPA) and WHO targets.


Assuntos
Quitosana/química , Filtração/métodos , Purificação da Água/métodos , Acetatos/química , Quitosana/farmacologia , Escherichia coli/isolamento & purificação , Floculação , Levivirus/isolamento & purificação , Polímeros/química , Têxteis
8.
Transbound Emerg Dis ; 69(4): 2373-2383, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34327845

RESUMO

Growth in pork production during the last decade in South Africa has escalated the risk of zoonotic pathogen emergence. This cross-sectional study was conducted to evaluate evidence for transmission of influenza A virus between pigs and swine workers. Between February and October 2018, samples from swine workers and pigs were collected from three farms in KwaZulu-Natal Province, South Africa. Workers nasal washes and serum samples, and swine oral secretion samples (rope sampling method) were studied for evidence of swine influenza A virus infection using molecular and serological methods. Among 84 human nasal washes and 51 swine oral secretion specimens, 44 (52.4%) and 6 (11.8%) had molecular evidence of influenza A virus. Microneutralization assays with enrolled workers' sera against swine H1N1 and H3N2 viruses revealed a high prevalence of elevated antibodies. Multivariate risk factor analysis showed that male workers from the age-group quartile 23-32 years, who self-reported a recent history of exposure to someone with influenza disease and seldom use of personal protective equipment were at highest risk of molecular detection of influenza A virus. These pilot study data suggest that influenza A viruses are likely highly prevalent in South African swine farms. South Africa would benefit from periodic surveillance for novel influenza viruses in swine farms as well as education and seasonal influenza vaccine programmes for swine workers.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Anticorpos Antivirais , Estudos Transversais , Fazendas , Humanos , Vírus da Influenza A Subtipo H3N2 , Masculino , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Projetos Piloto , África do Sul/epidemiologia , Suínos , Zoonoses/epidemiologia
9.
Pathogens ; 10(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34959559

RESUMO

Surface waters used for drinking water supply often receive upstream wastewater effluent inputs, resulting in de facto wastewater reuse for drinking water and recreation. As populations grow, demands on water supplies increase. As this trend continues, it creates the need to understand the risks associated with such reuse. In North Carolina, potable reuse has been proposed as a combination of at least 80% surface water with up to 20% tertiary-treated, dual-disinfected, reclaimed wastewater, which is then stored for 5 days and further treated using conventional drinking water treatment methods. The state of North Carolina has set standards for both intake surface water and for the reclaimed water produced by wastewater utilities, using indicator microorganisms to measure compliance. The goal of this study was to quantify fecal indicator microorganisms, specifically E. coli, coliphages, and C. perfringens as well as key pathogens, specifically Salmonella spp. bacteria, adenoviruses, noroviruses, and the protozoan parasites Cryptosporidium and Giardia, in two types of water representing potential candidates for potable reuse in North Carolina, (1) run of river surface water and (2) sewage-impacted surface waters, with the purpose of determining if there are predictive relationships between these two microorganism groups that support microbial indicator reliability.

10.
Front Public Health ; 9: 783832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970529

RESUMO

Reports of COVID-19 cases potentially attributed to fomite transmission led to the extensive use of various disinfectants to control viral spread. Alternative disinfectants, such as essential oils, have emerged as a potential antimicrobial. Four essential oil blends were tested on three different surfaces inoculated with a coronavirus surrogate, bacteriophage Phi 6, and a bacterial indicator, Staphylococcus aureus. Log10 concentration reductions were analyzed using GraphPad Prism software. Data collected in this study show that the application of dilute essential oil disinfectants using a spray delivery device is an effective way to reduce concentrations of bacterial and viral microorganisms on ceramic, stainless steel, and laminate surfaces. Surrogate viruses were reduced up to 6 log10 PFU and bacterial were reduced up to 4 log10 CFU. Although surfaces are no longer considered a high risk fomite for COVID-19 transmission, the disinfection of microorganisms on surfaces remains an important consideration for high touch areas in hospitals, waiting rooms, etc. The application of spray disinfectants, based on essential oil blends, provides a rapid and effective means to reduce microbial contamination on high-touched surfaces.


Assuntos
COVID-19 , Desinfetantes , Óleos Voláteis , Desinfetantes/farmacologia , Desinfecção , Humanos , Óleos Voláteis/farmacologia , SARS-CoV-2
11.
Trop Dis Travel Med Vaccines ; 7(1): 8, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731192

RESUMO

Influenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.

12.
Transbound Emerg Dis ; 68(2): 361-367, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32535997

RESUMO

Disease outbreaks can readily threaten swine production operations sometimes resulting in large economic losses. Pathogen surveillance in swine farms can be an effective approach for the early identification of new disease threats and the mitigation of transmission before broad dissemination among a herd occurs. Non-invasive environmental bioaerosol sampling could be an effective and affordable approach for conducting routine surveillance in farms, providing an additional tool for farmers to protect their animals and themselves from new disease threats. In this pilot study, we implemented a non-invasive, prospective bioaerosol sampling strategy in a swine farm located in the United States to detect economically important swine pathogens. Farm personnel collected air samples from two swine barns for 23 weeks between July and December 2017. Samples were then tested within 24 hr of collection by molecular techniques for a number of economically important swine pathogens. Of the 86 bioaerosol samples collected, 4 (4.7%) were positive for influenza A, 1 (1.2%) was positive for influenza D, 13 (15.1%) were positive for PCV2, and 13 (15.1%) were positive for PCV3. Overall, this pilot study showed that our bioaerosol surveillance strategy was feasible and able to generate data that could be quickly disseminated back to the farm stakeholders (within 24 hr). We were also able to identify PCV2, PCV3 and influenza A virus in air samples as clinical disease became apparent in the pigs, strongly suggesting that bioaerosol sampling can be used as an effective non-invasive surveillance approach for the detection of multiple pathogens in this and likely other animal production environments.


Assuntos
Microbiologia do Ar , Circovirus/isolamento & purificação , Fazendas , Orthomyxoviridae/isolamento & purificação , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Monitoramento Ambiental , Monitoramento Epidemiológico , Fazendeiros , Humanos , Vírus da Influenza A/isolamento & purificação , North Carolina , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Projetos Piloto , Estudos Prospectivos , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Thogotovirus/isolamento & purificação
13.
Sci Rep ; 11(1): 16994, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417469

RESUMO

Modern day large-scale, high-density farming environments are inherently susceptible to viral outbreaks, inadvertently creating conditions that favor increased pathogen transmission and potential zoonotic spread. Metagenomic sequencing has proven to be a useful tool for characterizing the microbial burden in both people, livestock, and environmental samples. International efforts have been successful at characterizing pathogens in commercial farming environments, especially swine farms, however it is unclear whether the full extent of microbial agents have been adequately captured or is representative of farms elsewhere. To augment international efforts we performed metagenomic next-generation sequencing on nine swine slurry and three environmental samples from a United States of America (U.S.A.) farm operation, characterized the microbial composition of slurry, and identified novel viruses. We assembled a remarkable total of 1792 viral genomes, of which 554 were novel/divergent. We assembled 1637 Picobirnavirus genome segments, of which 538 are novel. In addition, we discovered 10 new viruses belonging to a novel taxon: porcine Statoviruses; which have only been previously reported in human, macaques, mouse, and cows. We assembled 3 divergent Posaviruses and 3 swine Picornaviruses. In addition to viruses described, we found other eukaryotic genera such as Entamoeba and Blastocystis, and bacterial genera such as Listeria, Treponema, Peptoclostridium and Bordetella in the slurry. Of these, two species Entamoeba histolytica and Listeria monocytogenes known to cause human disease were detected. Further, antimicrobial resistance genes such as tetracycline and MLS (macrolide, lincosamide, streptogramin) were also identified. Metagenomic surveillance in swine fecal slurry has great potential for novel and antimicrobial resistant pathogen detection.


Assuntos
Fazendas , Fezes/microbiologia , Metagenômica , Suínos/microbiologia , Animais , Bactérias/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Genes Virais , Sequenciamento de Nucleotídeos em Larga Escala , Vírus/genética
14.
Open Forum Infect Dis ; 7(5): ofaa134, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32462044

RESUMO

From October to December 2018, periodic bioaerosol sampling was conducted at a live bird market in Kunshan, China. Sixty-six (55%) of 120 samples had molecular evidence of avian influenza viruses. Four yielded live H9N2 virus after egg culture.

15.
Sci Rep ; 10(1): 10059, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572119

RESUMO

Despite close contact between humans and animals on large scale farms, little to no infectious disease research is conducted at this interface. Our goal in this preliminary study was to explore if we could detect swine pathogens using a non-invasive, indirect approach through the study of swine slurry. From April to November 2018, 105 swine slurry samples were collected by farm personnel from waste pits at two sites on a swine farm in North Carolina. These samples were tested for DNA and RNA viruses using a real-time PCR and RT-PCR. Statistical analyses were performed to measure association between virus positive outcomes and potential predictors such as date of sample collection, weight of pigs, number of pigs in barn, temperature, and weather conditions. Overall, 86% of the samples had evidence of at least one of the targeted viruses. Ultimately, this study demonstrated the utility of conducting noninvasive surveillance for swine pathogens through the study of swine slurry. Such swine slurry surveillance may supplant the need to handle, restrain, and collect specimens directly from pigs thus providing an approach to emerging pathogen detection that appeals to the swine industry.


Assuntos
DNA Viral/genética , RNA Viral/genética , Doenças dos Suínos/virologia , Vírus/classificação , Animais , Fazendas , Estudos de Viabilidade , Esterco/virologia , North Carolina , Filogenia , Reação em Cadeia da Polimerase , Vigilância da População , Suínos , Vírus/genética , Vírus/isolamento & purificação
16.
J Clin Virol ; 128: 104391, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32403008

RESUMO

BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats. OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily. STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types. CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.


Assuntos
Doenças das Aves/diagnóstico , Infecções por Coronavirus/diagnóstico , Coronavirus/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Doenças dos Suínos/diagnóstico , Animais , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Doenças das Aves/virologia , Aves , COVID-19 , Coronavirus/genética , Infecções por Coronavirus/virologia , Variação Genética , Humanos , Pandemias , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , SARS-CoV-2 , Suínos , Doenças dos Suínos/virologia
17.
Sci Total Environ ; 738: 139495, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32425257

RESUMO

Evidence of exposure to enteric pathogens through the air and associated risk of infection is scarce in the literature outside of animal- or human-waste handling settings. Cities with poor sanitation are important locations to investigate this aerial exposure pathway as their rapid growth will pose unprecedented challenges in waste management. To address this issue, simple surveillance methods are needed. Therefore, the objectives of this study were to optimize a community exposure bioaerosol surveillance strategy for urban outdoor locations with poor sanitation, and to determine which bioaerosols could contribute to exposure. Passive and active bioaerosol sampling methods were used to characterize the fate and transport of sanitation-related bioaerosols during the rainy and dry seasons in La Paz, Bolivia. Median coliform bacteria fluxes were 71 CFU/(m2 × h) during the rainy season and 64 CFU/(m2 × h) during the dry season, with 38% of the dry season samples testing positive for E. coli. Wind speed, relative humidity and UVB irradiance were identified as significant covariates to consider in bioaerosol transport models in La Paz. Active sampling yielded one positive sample (10%) for human adenovirus (HadV) and one sample (10%) for influenza A virus during the rainy season. HadV was detected at the site with the highest bacterial flux. Four samples (8%) were positive for influenza A virus in the dry season. These findings suggest that aerosols can contribute to community exposure to potentially pathogenic microorganisms in cities with poor sanitation. The use of passive sampling, despite its limitations, can provide quantitative data on microorganisms' viability within realistic timeframes of personal exposure.


Assuntos
Saúde Única , Saneamento , Aerossóis , Microbiologia do Ar , Animais , Bolívia , Cidades , Estudos Transversais , Escherichia coli , Humanos
18.
Artigo em Inglês | MEDLINE | ID: mdl-32817802

RESUMO

BACKGROUND: In a year-long pneumonia etiology study conducted June 2017 to May 2018 in Sarawak, Malaysia, 599 patients' nasopharyngeal swab specimens were studied with real-time polymerase chain reaction (rPCR)/ reverse-transcription (rRT-PCR) assays for respiratory pathogens known to contribute to the high burden of lower respiratory tract infections. The study team sought to compare real-time assay results with panspecies conventional molecular diagnostics to compare sensitivities and learn if novel viruses had been missed. METHODS: Specimens were studied for evidence of adenovirus (AdV), enterovirus (EV) and coronavirus (CoV) with panspecies gel-based nested PCR/RT-PCR assays. Gene sequences of specimens positive by panspecies assays were sequenced and studied with the NCBI Basic Local Alignment Search Tool software. RESULTS: There was considerable discordance between real-time and conventional molecular methods. The real-time AdV assay found a positivity of 10.4%; however, the AdV panspecies assay detected a positivity of 12.4% and the conventional AdV-Hexon assay detected a positivity of 19.6%. The CoV and EV panspecies assays similarly detected more positive specimens than the real-time assays, with a positivity of 7.8% by the CoV panspecies assay versus 4.2% by rRT-PCR, and 8.0% by the EV panspecies assay versus 1.0% by rRT-PCR. We were not able to ascertain virus viability in this setting. While most discordance was likely due to assay sensitivity for previously described human viruses, two novel, possible zoonotic AdV were detected. CONCLUSIONS: The observed differences in the two modes of amplification suggest that where a problem with sensitivity is suspected, real-time assay results might be supplemented with panspecies conventional PCR/RT-PCR assays.

19.
PLoS One ; 15(5): e0233117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32396550

RESUMO

Severe acute respiratory illness (SARI) is a major cause of death and morbidity in low- and middle-income countries, however, the etiologic agents are often undetermined due to the lack of molecular diagnostics in hospitals and clinics. To examine evidence for select viral infections among patients with SARI in northern Vietnam, we studied 348 nasopharyngeal samples from military and civilian patients admitted to 4 hospitals in the greater Hanoi area from 2017-2019. Initial screening for human respiratory viral pathogens was performed in Hanoi, Vietnam at the National Institute of Hygiene and Epidemiology (NIHE) or the Military Institute of Preventative Medicine (MIPM), and an aliquot was shipped to Duke-NUS Medical School in Singapore for validation. Patient demographics were recorded and used to epidemiologically describe the infections. Among military and civilian cases of SARI, 184 (52.9%) tested positive for one or more respiratory viruses. Influenza A virus was the most prevalent virus detected (64.7%), followed by influenza B virus (29.3%), enterovirus (3.8%), adenovirus (1.1%), and coronavirus (1.1%). Risk factor analyses demonstrated an increased risk of influenza A virus detection among military hospital patients (adjusted OR, 2.0; 95% CI, 1.2-3.2), and an increased risk of influenza B virus detection among patients enrolled in year 2017 (adjusted OR, 7.9; 95% CI, 2.7-22.9). As influenza A and B viruses were commonly associated with SARI and are treatable, SARI patients entering these hospitals would benefit if the hospitals were able to adapt onsite molecular diagnostics.


Assuntos
Pneumonia/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/virologia , Adolescente , Adulto , Coronavirus/isolamento & purificação , Enterovirus/isolamento & purificação , Feminino , Humanos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Instalações Militares/estatística & dados numéricos , Pneumonia/virologia , Vietnã/epidemiologia , Adulto Jovem
20.
Artigo em Inglês | MEDLINE | ID: mdl-32190346

RESUMO

In 2018, our team collected aerosols samples from five poultry farms in Malaysia. Influenza D virus was detected in 14% of samples. One sample had an 86.3% identity score similar to NCBI accession number MH785020.1. This is the first molecular sequence of influenza D virus detected in Southeast Asia from a bioaerosol sample. Our findings indicate that further study of role of IDV in poultry is necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA