Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271585

RESUMO

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Assuntos
Carbono , Floresta Úmida , Carbono/metabolismo , Ecossistema , Secas , Água/metabolismo , Árvores/metabolismo , Carboidratos , Folhas de Planta/metabolismo
2.
Plant Cell Environ ; 46(1): 133-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305510

RESUMO

The isotopic composition of xylem water (δX ) is of considerable interest for plant source water studies. In-situ monitored isotopic composition of transpired water (δT ) could provide a nondestructive proxy for δX -values. Using flow-through leaf chambers, we monitored 2-hourly δT -dynamics in two tropical plant species, one canopy-forming tree and one understory herbaceous species. In an enclosed rainforest (Biosphere 2), we observed δT -dynamics in response to an experimental severe drought, followed by a 2 H deep-water pulse applied belowground before starting regular rain. We also sampled branches to obtain δX -values from cryogenic vacuum extraction (CVE). Daily flux-weighted δ18 OT -values were a good proxy for δ18 OX -values under well-watered and drought conditions that matched the rainforest's water source. Transpiration-derived δ18 OX -values were mostly lower than CVE-derived values. Transpiration-derived δ2 HX -values were relatively high compared to source water and consistently higher than CVE-derived values during drought. Tracing the 2 H deep-water pulse in real-time showed distinct water uptake and transport responses: a fast and strong contribution of deep water to canopy tree transpiration contrasting with a slow and limited contribution to understory species transpiration. Thus, the in-situ transpiration method is a promising tool to capture rapid dynamics in plant water uptake and use by both woody and nonwoody species.


Assuntos
Isótopos , Água
3.
Sci Total Environ ; 893: 164763, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308023

RESUMO

Deep rooting is considered a central drought-mitigation trait with vast impact on ecosystem water cycling. Despite its importance, little is known about the overall quantitative water use via deep roots and dynamic shifts of water uptake depths with changing ambient conditions. Knowledge is especially sparse for tropical trees. Therefore, we conducted a drought, deep soil water labeling and re-wetting experiment at Biosphere 2 Tropical Rainforest. We used in situ methods to determine water stable isotope values in soil and tree water in high temporal resolution. Complemented by soil and stem water content and sap flow measurements we determined percentages and quantities of deep-water in total root water uptake dynamics of different tree species. All canopy trees had access to deep-water (max. uptake depth 3.3 m), with contributions to transpiration ranging between 21 % and 90 % during drought, when surface soil water availability was limited. Our results suggest that deep soil is an essential water source for tropical trees that delays potentially detrimental drops in plant water potentials and stem water content when surface soil water is limited and could hence mitigate the impacts of increasing drought occurrence and intensity as a consequence of climate change. Quantitatively, however, the amount of deep-water uptake was low due to the trees' reduction of sap flow during drought. Total water uptake largely followed surface soil water availability and trees switched back their uptake depth dynamically, from deep to shallow soils, following rainfall. Total transpiration fluxes were hence largely driven by precipitation input.


Assuntos
Ecossistema , Árvores , Secas , Transpiração Vegetal , Água , Solo , Raízes de Plantas
4.
Science ; 374(6574): 1514-1518, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914503

RESUMO

Severe droughts endanger ecosystem functioning worldwide. We investigated how drought affects carbon and water fluxes as well as soil-plant-atmosphere interactions by tracing 13CO2 and deep water 2H2O label pulses and volatile organic compounds (VOCs) in an enclosed experimental rainforest. Ecosystem dynamics were driven by different plant functional group responses to drought. Drought-sensitive canopy trees dominated total fluxes but also exhibited the strongest response to topsoil drying. Although all canopy-forming trees had access to deep water, these reserves were spared until late in the drought. Belowground carbon transport was slowed, yet allocation of fresh carbon to VOCs remained high. Atmospheric VOC composition reflected increasing stress responses and dynamic soil-plant-atmosphere interactions, potentially affecting atmospheric chemistry and climate feedbacks. These interactions and distinct functional group strategies thus modulate drought impacts and ecosystem susceptibility to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA