Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 387(6): 506-513, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947709

RESUMO

BACKGROUND: The benefits of removing small (≤6 mm), asymptomatic kidney stones endoscopically is unknown. Current guidelines leave such decisions to the urologist and the patient. A prospective study involving older, nonendoscopic technology and some retrospective studies favor observation. However, published data indicate that about half of small renal stones left in place at the time that larger stones were removed caused other symptomatic events within 5 years after surgery. METHODS: We conducted a multicenter, randomized, controlled trial in which, during the endoscopic removal of ureteral or contralateral kidney stones, remaining small, asymptomatic stones were removed in 38 patients (treatment group) and were not removed in 35 patients (control group). The primary outcome was relapse as measured by future emergency department visits, surgeries, or growth of secondary stones. RESULTS: After a mean follow-up of 4.2 years, the treatment group had a longer time to relapse than the control group (P<0.001 by log-rank test). The restricted mean (±SE) time to relapse was 75% longer in the treatment group than in the control group (1631.6±72.8 days vs. 934.2±121.8 days). The risk of relapse was 82% lower in the treatment group than the control group (hazard ratio, 0.18; 95% confidence interval, 0.07 to 0.44), with 16% of patients in the treatment group having a relapse as compared with 63% of those in the control group. Treatment added a median of 25.6 minutes (interquartile range, 18.5 to 35.2) to the surgery time. Five patients in the treatment group and four in the control group had emergency department visits within 2 weeks after surgery. Eight patients in the treatment group and 10 in the control group reported passing kidney stones. CONCLUSIONS: The removal of small, asymptomatic kidney stones during surgery to remove ureteral or contralateral kidney stones resulted in a lower incidence of relapse than nonremoval and in a similar number of emergency department visits related to the surgery. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and the Veterans Affairs Puget Sound Health Care System; ClinicalTrials.gov number, NCT02210650.).


Assuntos
Endoscopia , Cálculos Renais , Prevenção Secundária , Cálculos Ureterais , Doença Crônica , Endoscopia/estatística & dados numéricos , Humanos , Incidência , Cálculos Renais/epidemiologia , Cálculos Renais/cirurgia , Recidiva , Cálculos Ureterais/epidemiologia , Cálculos Ureterais/cirurgia , Ureteroscopia
2.
J Ultrasound Med ; 43(3): 513-523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050780

RESUMO

OBJECTIVES: The number and distribution of lung ultrasound (LUS) imaging artifacts termed B-lines correlate with the presence of acute lung disease such as infection, acute respiratory distress syndrome (ARDS), and pulmonary edema. Detection and interpretation of B-lines require dedicated training and is machine and operator-dependent. The goal of this study was to identify radio frequency (RF) signal features associated with B-lines in a cohort of patients with cardiogenic pulmonary edema. A quantitative signal indicator could then be used in a single-element, non-imaging, wearable, automated lung ultrasound sensor (LUSS) for continuous hands-free monitoring of lung fluid. METHODS: In this prospective study a 10-zone LUS exam was performed in 16 participants, including 12 patients admitted with acute cardiogenic pulmonary edema (mean age 60 ± 12 years) and 4 healthy controls (mean age 44 ± 21). Overall,160 individual LUS video clips were recorded. The LUS exams were performed with a phased array probe driven by an open-platform ultrasound system with simultaneous RF signal collection. RF data were analyzed offline for candidate B-line indicators based on signal amplitude, temporal variability, and frequency spectrum; blinded independent review of LUS images for the presence or absence of B-lines served as ground truth. Predictive performance of the signal indicators was determined with receiving operator characteristic (ROC) analysis with k-fold cross-validation. RESULTS: Two RF signal features-temporal variability of signal amplitude at large depths and at the pleural line-were strongly associated with B-line presence. The sensitivity and specificity of a combinatorial indicator were 93.2 and 58.5%, respectively, with cross-validated area under the ROC curve (AUC) of 0.91 (95% CI = 0.80-0.94). CONCLUSION: A combinatorial signal indicator for use with single-element non-imaging LUSS was developed to facilitate continuous monitoring of lung fluid in patients with respiratory illness.


Assuntos
Edema Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Adulto , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Sensibilidade e Especificidade , Ultrassonografia/métodos
3.
BMC Vet Res ; 19(1): 141, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660015

RESUMO

BACKGROUND: Upper urinary tract stones are increasingly prevalent in pet cats and are difficult to manage. Surgical procedures to address obstructing ureteroliths have short- and long-term complications, and medical therapies (e.g., fluid diuresis and smooth muscle relaxants) are infrequently effective. Burst wave lithotripsy is a non-invasive, ultrasound-guided, handheld focused ultrasound technology to disintegrate urinary stones, which is now undergoing human clinical trials in awake unanesthetized subjects. RESULTS: In this study, we designed and performed in vitro testing of a modified burst wave lithotripsy system to noninvasively fragment stones in cats. The design accounted for differences in anatomic scale, acoustic window, skin-to-stone depth, and stone size. Prototypes were fabricated and tested in a benchtop model using 35 natural calcium oxalate monohydrate stones from cats. In an initial experiment, burst wave lithotripsy was performed using peak ultrasound pressures of 7.3 (n = 10), 8.0 (n = 5), or 8.9 MPa (n = 10) for up to 30 min. Fourteen of 25 stones fragmented to < 1 mm within the 30 min. In a second experiment, burst wave lithotripsy was performed using a second transducer and peak ultrasound pressure of 8.0 MPa (n = 10) for up to 50 min. In the second experiment, 9 of 10 stones fragmented to < 1 mm within the 50 min. Across both experiments, an average of 73-97% of stone mass could be reduced to fragments < 1 mm. A third experiment found negligible injury with in vivo exposure of kidneys and ureters in a porcine animal model. CONCLUSIONS: These data support further evaluation of burst wave lithotripsy as a noninvasive intervention for obstructing ureteroliths in cats.


Assuntos
Doenças do Gato , Litotripsia , Doenças dos Suínos , Urolitíase , Gatos , Humanos , Animais , Suínos , Litotripsia/veterinária , Rim , Urolitíase/veterinária , Oxalato de Cálcio , Modelos Animais , Doenças do Gato/diagnóstico por imagem , Doenças do Gato/terapia
4.
Proc Natl Acad Sci U S A ; 117(29): 16848-16855, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631991

RESUMO

In certain medical applications, transmitting an ultrasound beam through the skin to manipulate a solid object within the human body would be beneficial. Such applications include, for example, controlling an ingestible camera or expelling a kidney stone. In this paper, ultrasound beams of specific shapes were designed by numerical modeling and produced using a phased array. These beams were shown to levitate and electronically steer solid objects (3-mm-diameter glass spheres), along preprogrammed paths, in a water bath, and in the urinary bladders of live pigs. Deviation from the intended path was on average <10%. No injury was found on the bladder wall or intervening tissue.


Assuntos
Cálculos Renais/terapia , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Animais , Suínos , Transdutores , Terapia por Ultrassom/instrumentação
5.
J Urol ; 207(5): 1067-1076, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35311351

RESUMO

PURPOSE: We report stone comminution in the first 19 human subjects by burst wave lithotripsy (BWL), which is the transcutaneous application of focused, cyclic ultrasound pulses. MATERIALS AND METHODS: This was a prospective multi-institutional feasibility study recruiting subjects undergoing clinical ureteroscopy (URS) for at least 1 stone ≤12 mm as measured on computerized tomography. During the planned URS, either before or after ureteroscope insertion, BWL was administered with a handheld transducer, and any stone fragmentation and tissue injury were observed. Up to 3 stones per subject were targeted, each for a maximum of 10 minutes. The primary effectiveness outcome was the volume percent comminution of the stone into fragments ≤2 mm. The primary safety outcome was the independent, blinded visual scoring of tissue injury from the URS video. RESULTS: Overall, median stone comminution was 90% (IQR 20, 100) of stone volume with 21 of 23 (91%) stones fragmented. Complete fragmentation (all fragments ≤2 mm) within 10 minutes of BWL occurred in 9 of 23 stones (39%). Of the 6 least comminuted stones, likely causative factors for decreased effectiveness included stones that were larger than the BWL beamwidth, smaller than the BWL wavelength or the introduction of air bubbles from the ureteroscope. Mild reddening of the papilla and hematuria emanating from the papilla were observed ureteroscopically. CONCLUSIONS: The first study of BWL in human subjects resulted in a median of 90% comminution of the total stone volume into fragments ≤2 mm within 10 minutes of BWL exposure with only mild tissue injury.


Assuntos
Cálculos Renais , Litotripsia , Cálculos Ureterais , Humanos , Cálculos Renais/terapia , Litotripsia/efeitos adversos , Litotripsia/métodos , Estudos Prospectivos , Resultado do Tratamento , Cálculos Ureterais/terapia , Ureteroscopia/métodos
6.
J Urol ; 208(5): 1075-1082, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205340

RESUMO

PURPOSE: Our goal was to test transcutaneous focused ultrasound in the form of ultrasonic propulsion and burst wave lithotripsy to reposition ureteral stones and facilitate passage in awake subjects. MATERIALS AND METHODS: Adult subjects with a diagnosed proximal or distal ureteral stone were prospectively recruited. Ultrasonic propulsion alone or with burst wave lithotripsy was administered by a handheld transducer to awake, unanesthetized subjects. Efficacy outcomes included stone motion, stone passage, and pain relief. Safety outcome was the reporting of associated anticipated or adverse events. RESULTS: Twenty-nine subjects received either ultrasonic propulsion alone (n = 16) or with burst wave lithotripsy bursts (n = 13), and stone motion was observed in 19 (66%). The stone passed in 18 (86%) of the 21 distal ureteral stone cases with at least 2 weeks follow-up in an average of 3.9±4.9 days post-procedure. Fragmentation was observed in 7 of the burst wave lithotripsy cases. All subjects tolerated the procedure with average pain scores (0-10) dropping from 2.1±2.3 to 1.6±2.0 (P = .03). Anticipated events were limited to hematuria on initial urination post-procedure and mild pain. In total, 7 subjects had associated discomfort with only 2.2% (18 of 820) propulsion bursts. CONCLUSIONS: This study supports the efficacy and safety of using ultrasonic propulsion and burst wave lithotripsy in awake subjects to reposition and break ureteral stones to relieve pain and facilitate passage.


Assuntos
Cálculos Renais , Litotripsia , Cálculos Ureterais , Adulto , Humanos , Cálculos Renais/terapia , Litotripsia/efeitos adversos , Dor/etiologia , Ultrassom , Cálculos Ureterais/terapia
7.
J Acoust Soc Am ; 150(6): 4203, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34972267

RESUMO

Unlike shock wave lithotripsy, burst wave lithotripsy (BWL) uses tone bursts, consisting of many periods of a sinusoidal wave. In this work, an analytical theoretical approach to modeling mechanical stresses in a spherical stone was developed to assess the dependence of frequency and stone size on stress generated in the stone. The analytical model for spherical stones is compared against a finite-difference model used to calculate stress in nonspherical stones. It is shown that at low frequencies, when the wavelength is much greater than the diameter of the stone, the maximum principal stress is approximately equal to the pressure amplitude of the incident wave. With increasing frequency, when the diameter of the stone begins to exceed about half the wavelength in the surrounding liquid (the exact condition depends on the material of the stone), the maximum stress increases and can be more than six times greater than the incident pressure. These results suggest that the BWL frequency should be elevated for small stones to improve the likelihood and rate of fragmentation.


Assuntos
Cálculos Renais , Litotripsia , Cálculos Urinários , Humanos , Cálculos Renais/terapia , Litotripsia/métodos , Probabilidade , Estresse Mecânico
9.
Curr Opin Urol ; 30(2): 149-156, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31905177

RESUMO

PURPOSE OF REVIEW: Burst wave lithotripsy and ultrasonic propulsion of kidney stones are novel, noninvasive emerging technologies to separately or synergistically fragment and reposition stones in an office setting. The purpose of this review is to discuss the latest refinements in technology, to update on testing of safety and efficacy, and to review future applications. RECENT FINDINGS: Burst wave lithotripsy produced consistent, small passable fragments through transcutaneous applications in a porcine model, while producing minimal injury and clinical trials are now underway. A more efficient ultrasonic propulsion design that can also deliver burst wave lithotripsy effectively repositioned 95% of stones in 18 human participants (18 of 19 kidneys) and clinical trials continue. Acoustic tractor beam technology is an emerging technology with promising clinical applications through the manipulation of macroscopic objects. SUMMARY: The goal of the reviewed work is an office-based system to image, fragment, and reposition urinary stones to facilitate their natural passage. The review highlights progress in establishing safety, effectiveness, and clinical benefit of these new technologies. The work is also anticipating challenges in clinical trials and developing the next generation of technology to improve on the technology as it is being commercialized today.


Assuntos
Litotripsia/métodos , Terapia por Ultrassom/métodos , Cálculos Urinários/cirurgia , Acústica , Animais , Modelos Animais de Doenças , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/cirurgia , Litotripsia/instrumentação , Litotripsia/tendências , Litotripsia a Laser , Suínos , Terapia por Ultrassom/instrumentação , Ultrassonografia , Ureteroscopia , Cálculos Urinários/diagnóstico por imagem
10.
J Acoust Soc Am ; 148(1): 44, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32752768

RESUMO

Burst wave lithotripsy (BWL) is a technology for comminuting urinary stones. A BWL transducer's requirements of high-pressure output, limited acoustic window, specific focal depth, and frequency to produce fragments of passable size constrain focal beamwidth. However, BWL is most effective with a beam wider than the stone. To produce a broad-beam, an iterative angular spectrum approach was used to calculate a phase screen that was realized with a rapid prototyped lens. The technique did not accurately replicate a target beam profile when an axisymmetric profile was chosen. Adding asymmetric weighting functions to the target profile achieved appropriate beamwidth. Lenses were designed to create a spherically focused narrow-beam (6 mm) and a broad-beam (11 mm) with a 350-kHz transducer and 84-mm focal depth. Both lenses were used to fragment artificial stones (11 mm long) in a water bath, and fragmentation rates were compared. The linearly simulated and measured broad beamwidths that were 12 mm and 11 mm, respectively, with a 2-mm-wide null at center. The broad-beam and the narrow-beam lenses fragmented 44 ± 9% and 16 ± 4% (p = 0.007, N = 3) of a stone by weight, respectively, in the same duration at the same peak negative pressure. The method broadened the focus and improved the BWL rate of fragmentation of large stones.


Assuntos
Cálculos Renais , Litotripsia , Cálculos Urinários , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/terapia , Litotripsia/efeitos adversos , Transdutores
11.
J Acoust Soc Am ; 147(3): 1607, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32237849

RESUMO

Burst wave lithotripsy is a method to noninvasively fragment urinary stones by short pulses of focused ultrasound. In this study, physical mechanisms of stone fracture during burst wave lithotripsy were investigated. Photoelasticity imaging was used to visualize elastic wave propagation in model stones and compare results to numerical calculations. Epoxy and glass stone models were made into rectangular, cylindrical, or irregular geometries and exposed in a degassed water bath to focused ultrasound bursts at different frequencies. A high-speed camera was used to record images of the stone during exposure through a circular polariscope backlit by a monochromatic flash source. Imaging showed the development of periodic stresses in the stone body with a pattern dependent on frequency. These patterns were identified as guided wave modes in cylinders and plates, which formed standing waves upon reflection from the distal surfaces of the stone model, producing specific locations of stress concentration in the models. Measured phase velocities compared favorably to numerically calculated modes dependent on frequency and material. Artificial stones exposed to bursts produced cracks at positions anticipated by this mechanism. These results support guided wave generation and reflection as a mechanism of stone fracture in burst wave lithotripsy.


Assuntos
Cálculos Renais , Litotripsia , Cálculos Urinários , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/terapia , Som
12.
J Acoust Soc Am ; 147(6): 3819, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611160

RESUMO

Theoretical and numerical models were developed to calculate the polariscopic integrated light intensity that forms a projection of the dynamic stress within an axisymmetric elastic object. Although the model is general, this paper addressed its application to measurements of stresses in model kidney stones from a burst wave lithotripter for stone fragmentation. The stress was calculated using linear elastic equations, and the light propagation was modeled in the instantaneous case by integrating over the volume of the stone. The numerical model was written in finite differences. The resulting images agreed well with measured images. The measured images corresponded to the maximum shear stress distribution, although other stresses were also plotted. Comparison of the modeled and observed polariscope images enabled refinement of the photoelastic constant by minimizing the error between the calculated and measured fields. These results enable quantification of the stress within the polariscope images, determination of material properties, and the modes and mechanisms of stress production within a kidney stone. Such a model may help in interpreting elastic waves in structures, such as stones, toward improving lithotripsy procedures.


Assuntos
Cálculos Renais , Litotripsia , Humanos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/terapia , Estresse Mecânico
14.
World J Urol ; 36(5): 727-732, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29243111

RESUMO

PURPOSE: Posterior acoustic shadow width has been proposed as a more accurate measure of kidney stone size compared to direct measurement of stone width on ultrasound (US). Published data in humans to date have been based on a research using US system. Herein, we compared these two measurements in clinical US images. METHODS: Thirty patient image sets where computed tomography (CT) and US images were captured less than 1 day apart were retrospectively reviewed. Five blinded reviewers independently assessed the largest stone in each image set for shadow presence and size. Shadow size was compared to US and CT stone sizes. RESULTS: Eighty percent of included stones demonstrated an acoustic shadow; 83% of stones without a shadow were ≤ 5 mm on CT. Average stone size was 6.5 ± 4.0 mm on CT, 10.3 ± 4.1 mm on US, and 7.5 ± 4.2 mm by shadow width. On average, US overestimated stone size by 3.8 ± 2.4 mm based on stone width (p < 0.001) and 1.0 ± 1.4 mm based on shadow width (p < 0.0098). Shadow measurements decreased misclassification of stones by 25% among three clinically relevant size categories (≤ 5, 5.1-10, > 10 mm), and by 50% for stones ≤ 5 mm. CONCLUSIONS: US overestimates stone size compared to CT. Retrospective measurement of the acoustic shadow from the same clinical US images is a more accurate reflection of true stone size than direct stone measurement. Most stones without a posterior shadow are ≤ 5 mm.


Assuntos
Cálculos Renais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Adulto , Pesquisa Comparativa da Efetividade , Precisão da Medição Dimensional , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Estados Unidos
15.
J Acoust Soc Am ; 144(5): 2952, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30522301

RESUMO

Combined laboratory experiment and numerical simulation are conducted on bubble clouds nucleated on the surface of a model kidney stone to quantify the energy shielding of the stone caused by cavitation during burst wave lithotripsy (BWL). In the experiment, the bubble clouds are visualized and bubble-scattered acoustics are measured. In the simulation, a compressible, multi-component flow solver is used to capture complex interactions among cavitation bubbles, the stone, and the burst wave. Quantitative agreement is confirmed between results of the experiment and the simulation. In the simulation, a significant shielding of incident wave energy by the bubble clouds is quantified. The magnitude of shielding can reach up to 90% of the energy of the incoming burst wave that otherwise would be transmitted into the stone, suggesting a potential loss of efficacy of stone comminution. There is a strong correlation between the magnitude of the energy shielding and the amplitude of the bubble-scattered acoustics, independent of the initial size and the void fraction of the bubble cloud within a range addressed in the simulation. This correlation could provide for real-time monitoring of cavitation activity in BWL.


Assuntos
Ondas de Choque de Alta Energia/uso terapêutico , Cálculos Renais/terapia , Litotripsia/métodos , Acústica/instrumentação , Algoritmos , Humanos , Litotripsia/instrumentação
16.
Proc Natl Acad Sci U S A ; 111(22): 8161-6, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843132

RESUMO

The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has been recently gaining momentum. In HIFU, ultrasound energy from an extracorporeal source is focused within the body to ablate tissue at the focus while leaving the surrounding organs and tissues unaffected. Most HIFU therapies are designed to use heating effects resulting from the absorption of ultrasound by tissue to create a thermally coagulated treatment volume. Although this approach is often successful, it has its limitations, such as the heat sink effect caused by the presence of a large blood vessel near the treatment area or heating of the ribs in the transcostal applications. HIFU-induced bubbles provide an alternative means to destroy the target tissue by mechanical disruption or, at its extreme, local fractionation of tissue within the focal region. Here, we demonstrate the feasibility of a recently developed approach to HIFU-induced ultrasound-guided tissue fractionation in an in vivo pig model. In this approach, termed boiling histotripsy, a millimeter-sized boiling bubble is generated by ultrasound and further interacts with the ultrasound field to fractionate porcine liver tissue into subcellular debris without inducing further thermal effects. Tissue selectivity, demonstrated by boiling histotripsy, allows for the treatment of tissue immediately adjacent to major blood vessels and other connective tissue structures. Furthermore, boiling histotripsy would benefit the clinical applications, in which it is important to accelerate resorption or passage of the ablated tissue volume, diminish pressure on the surrounding organs that causes discomfort, or insert openings between tissues.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado/cirurgia , Frações Subcelulares/diagnóstico por imagem , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/métodos , Animais , Eritrócitos/citologia , Ablação por Ultrassom Focalizado de Alta Intensidade/efeitos adversos , Fígado/irrigação sanguínea , Fígado/citologia , Circulação Hepática , Pulmão/citologia , Pulmão/cirurgia , Modelos Animais , Sus scrofa , Transdutores , Terapia por Ultrassom/efeitos adversos , Ultrassonografia
17.
J Acoust Soc Am ; 141(4): 2327, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28464662

RESUMO

Newer imaging and therapeutic ultrasound technologies may benefit from in situ pressure levels higher than conventional diagnostic ultrasound. One example is the recently developed use of ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe has been used to deliver the acoustic pushing pulses. The probe is a curvilinear array comprising 128 elements equally spaced along a convex cylindrical surface. The effectiveness of the treatment can be increased by using higher transducer output to provide a stronger pushing force; however nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the three-dimensional Westervelt equation with the boundary condition set to match low power measurements of the acoustic pressure field. Nonlinear focal waveforms simulated for different numbers of operating elements of the array at several output power levels were compared to fiber-optic hydrophone measurements and were found to be in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of a diagnostic imaging probe.


Assuntos
Ondas de Choque de Alta Energia , Modelos Teóricos , Transdutores de Pressão , Terapia por Ultrassom/instrumentação , Ultrassom/instrumentação , Ultrassonografia/instrumentação , Desenho de Equipamento , Dinâmica não Linear , Análise Numérica Assistida por Computador , Pressão , Reprodutibilidade dos Testes
18.
J Urol ; 195(4 Pt 1): 956-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26521719

RESUMO

PURPOSE: Ultrasonic propulsion is a new technology using focused ultrasound energy applied transcutaneously to reposition kidney stones. We report what are to our knowledge the findings from the first human investigational trial of ultrasonic propulsion toward the applications of expelling small stones and dislodging large obstructing stones. MATERIALS AND METHODS: Subjects underwent ultrasonic propulsion while awake without sedation in clinic, or during ureteroscopy while anesthetized. Ultrasound and a pain questionnaire were completed before, during and after propulsion. The primary outcome was to reposition stones in the collecting system. Secondary outcomes included safety, controllable movement of stones and movement of stones less than 5 mm and 5 mm or greater. Adverse events were assessed weekly for 3 weeks. RESULTS: Kidney stones were repositioned in 14 of 15 subjects. Of the 43 targets 28 (65%) showed some level of movement while 13 (30%) were displaced greater than 3 mm to a new location. Discomfort during the procedure was rare, mild, brief and self-limited. Stones were moved in a controlled direction with more than 30 fragments passed by 4 of the 6 subjects who had previously undergone a lithotripsy procedure. The largest stone moved was 10 mm. One patient experienced pain relief during treatment of a large stone at the ureteropelvic junction. In 4 subjects a seemingly large stone was determined to be a cluster of small passable stones after they were moved. CONCLUSIONS: Ultrasonic propulsion was able to successfully reposition stones and facilitate the passage of fragments in humans. No adverse events were associated with the investigational procedure.


Assuntos
Cálculos Renais/terapia , Terapia por Ultrassom , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
J Urol ; 195(1): 171-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26301788

RESUMO

PURPOSE: Ultrasound is known to overestimate kidney stone size. We explored measuring the acoustic shadow behind kidney stones combined with different ultrasound imaging modalities to improve stone sizing accuracy. MATERIALS AND METHODS: A total of 45 calcium oxalate monohydrate stones were imaged in vitro at 3 different depths with the 3 different ultrasound imaging modalities of conventional ray line, spatial compound and harmonic imaging. The width of the stone and the width of the acoustic shadow were measured by 4 operators blinded to the true size of the stone. RESULTS: Average error between the measured and true stone width was 1.4 ± 0.8 mm, 1.7 ± 0.9 mm, 0.9 ± 0.8 mm for ray line, spatial compound and harmonic imaging, respectively. Average error between the shadow width and true stone width was 0.2 ± 0.7 mm, 0.4 ± 0.7 mm and 0.0 ± 0.8 mm for ray line, spatial compound and harmonic imaging, respectively. Sizing error based on the stone width worsened with greater depth (p <0.001) while the sizing error based on the shadow width was independent of depth. CONCLUSIONS: Shadow width was a more accurate measure of true stone size than a direct measurement of the stone in the ultrasound image (p <0.0001). The ultrasound imaging modality also impacted the measurement accuracy. All methods performed similarly for shadow size while harmonic imaging was the most accurate stone size modality. Overall 78% of the shadow sizes were accurate to within 1 mm, which is similar to the resolution obtained with clinical computerized tomography.


Assuntos
Cálculos Renais/diagnóstico por imagem , Cálculos Renais/patologia , Acústica , Oxalato de Cálcio , Humanos , Ultrassonografia
20.
Curr Opin Urol ; 26(3): 264-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26845428

RESUMO

PURPOSE OF REVIEW: Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. RECENT FINDINGS: Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. SUMMARY: Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.


Assuntos
Cálculos Renais/terapia , Litotripsia/métodos , Terapia por Ultrassom/métodos , Ureteroscopia/métodos , Desenho de Equipamento , Humanos , Invenções , Terapia por Ultrassom/efeitos adversos , Terapia por Ultrassom/instrumentação , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA