Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cytometry A ; 101(9): 749-781, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34585818

RESUMO

Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.


Assuntos
Plantas , Ploidias , DNA de Plantas/genética , Citometria de Fluxo/métodos , Tamanho do Genoma , Genoma de Planta , Plantas/genética
2.
Ann Bot ; 125(4): 543-555, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31777923

RESUMO

BACKGROUND AND AIMS: Compared with other plant lineages, bryophytes have very small genomes with little variation across species, and high levels of endopolyploid nuclei. This study is the first analysis of moss genome evolution over a broad taxonomic sampling using phylogenetic comparative methods. We aim to determine whether genome size evolution is unidirectional as well as examine whether genome size and endopolyploidy are correlated in mosses. METHODS: Genome size and endoreduplication index (EI) estimates were newly generated using flow cytometry from moss samples collected in Canada. Phylogenetic relationships between moss species were reconstructed using GenBank sequence data and maximum likelihood methods. Additional 1C-values were compiled from the literature and genome size and EI were mapped onto the phylogeny to reconstruct ancestral character states, test for phylogenetic signal and perform phylogenetic independent contrasts. KEY RESULTS: Genome size and EI were obtained for over 50 moss taxa. New genome size estimates are reported for 33 moss species and new EIs are reported for 20 species. In combination with data from the literature, genome sizes were mapped onto a phylogeny for 173 moss species with this analysis, indicating that genome size evolution in mosses does not appear to be unidirectional. Significant phylogenetic signal was detected for genome size when evaluated across the phylogeny, whereas phylogenetic signal was not detected for EI. Genome size and EI were not found to be significantly correlated when using phylogenetically corrected values. CONCLUSIONS: Significant phylogenetic signal indicates closely related mosses have more similar genome sizes and EI values. This study supports that DNA content in mosses is defined by small genomes that are highly endopolyploid, suggesting strong selective pressure to maintain these features. Further research is needed to understand the functional significance of DNA content evolution in mosses.


Assuntos
Briófitas , Endorreduplicação , Evolução Molecular , Tamanho do Genoma , Genoma de Planta , Filogenia , Ploidias
4.
Genome ; 57(10): 555-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25727714

RESUMO

Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.


Assuntos
Evolução Molecular , Gleiquênias/genética , Tamanho do Genoma , Genoma de Planta , Tamanho Celular , Ecossistema , Gleiquênias/classificação , Gleiquênias/citologia , Filogenia , Poliploidia , Esporos/citologia
5.
Mol Phylogenet Evol ; 68(3): 619-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23624193

RESUMO

Across embryophytes there is a significant range in DNA content, both in regards to genome size (total DNA in an unreduced chromosome complement) and degree of endoreduplication (when DNA replication not followed by division resulting in various ploidy levels within the same individual). However, there is little information available on DNA content evolution in liverworts, the likely sister group to all other living plants. This study seeks to detect a phylogenetic structure in the variation in genome size and degree of endopolyploidy within liverworts. Furthermore, we test the hypothesis that shifts in breeding systems and genome size are correlated, as polyploidy is suggested to be a possible mechanism for the evolution of monoecy in liverworts and could therefore be associated with larger genome sizes. Genome size was determined for 67 liverwort species from 33 families using flow cytometry. Estimates for 48 species and 16 families are new to science. A phylogeny was reconstructed using the plastid gene rbcL. Over all taxa analyzed, there was a considerable range in genome size estimates with 1C-values from 0.27 pg (Jungermannia rubra) to 20.46 pg (Phyllothallia fuegiana). Large genome sizes were also found in the Haplomitriopsida. None of the liverwort species showed evidence of endopolyploidy. Although some taxa may be polyploids, a correlation between shifts in genome size and breeding system is lacking. Importantly, genome size variation in liverworts exhibits strong phylogenetic signal (Pagel's λ=0.99955).


Assuntos
Evolução Biológica , DNA de Plantas , Variação Genética , Hepatófitas/genética , Cruzamento , Canadá , Cromossomos de Plantas , Evolução Molecular , Tamanho do Genoma , Genoma de Planta , Filogenia , Plastídeos/genética , Poliploidia
6.
Mol Phylogenet Evol ; 66(3): 1089-94, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261712

RESUMO

Recent innovations in high-throughput DNA sequencing methodology (next generation sequencing technologies [NGS]) allow for the generation of large amounts of high quality data that may be particularly critical for resolving ambiguous relationships such as those resulting from rapid radiations. Application of NGS technology to bryology is limited to assembling entire nuclear or organellar genomes of selected exemplars of major lineages (e.g., classes). Here we outline how organellar genomes and the entire nuclear ribosomal DNA repeat can be obtained from minimal amounts of moss tissue via small-scale 454 GS FLX sequencing. We sampled two Funariaceae species, Funaria hygrometrica and Entosthodon obtusus, and assembled nearly complete organellar genomes and the whole nuclear ribosomal DNA repeat unit (18S-ITS1-5.8S-ITS2-26S-IGS1-5S-IGS2) for both taxa. Sequence data from these species were compared to sequences from another Funariaceae species, Physcomitrella patens, revealing low overall degrees of divergence of the organellar genomes and nrDNA genes with substitutions spread rather evenly across their length, and high divergence within the external spacers of the nrDNA repeat. Furthermore, we detected numerous microsatellites among the 454 assemblies. This study demonstrates that NGS methodology can be applied to mosses to target large genomic regions and identify microsatellites.


Assuntos
Briófitas/genética , DNA Ribossômico/genética , Genoma Mitocondrial/genética , Genomas de Plastídeos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Sequência de Bases , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie
7.
Genome ; 56(8): 431-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24168626

RESUMO

As our knowledge of plant genome size estimates continues to grow, one group has continually been neglected: the hornworts. Hornworts (Anthocerotophyta) have been traditionally grouped with liverworts and mosses because they share a haploid dominant life cycle; however, recent molecular studies place hornworts as the sister lineage to extant tracheophytes. Given the scarcity of information regarding the DNA content of hornworts, our objective was to estimate the 1C-value for a range of hornwort species within a phylogenetic context. Using flow cytometry, we estimated genome size for 36 samples representing 24 species. This accounts for roughly 10% of known hornwort species. Haploid genome sizes (1C-value) ranged from 160 Mbp or 0.16 pg (Leiosporoceros dussii) to 719 Mbp or 0.73 pg (Nothoceros endiviifolius). The average 1C-value was 261 ± 104 Mbp (0.27 ± 0.11 pg). Ancestral reconstruction of genome size on a hornwort phylogeny suggests a small ancestral genome size and revealed increases in genome size in the most recently divergent clades. Much more work is needed to understand DNA content variation in this phylogenetically important group, but this work has significantly increased our knowledge of genome size variation in hornworts.


Assuntos
Anthocerotophyta/classificação , Anthocerotophyta/genética , Tamanho do Genoma , Genoma de Planta , Evolução Molecular , Citometria de Fluxo , Variação Genética , Filogenia , Plantas/classificação , Plantas/genética , Poliploidia
8.
New Phytol ; 196(4): 1240-1250, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23078229

RESUMO

Genome size (C-value) and endopolyploidy (endoreduplication index, EI) are known to correlate with various morphological and ecological traits, in addition to phylogenetic placement. A phylogenetically controlled multivariate analysis was used to explore the relationships between DNA content and phenotype in angiosperms. Seeds from 41 angiosperm species (17 families) were grown in a common glasshouse experiment. Genome size (2C-value and 1Cx-value) and EI (in four tissues: leaf, stem, root, petal) were determined using flow cytometry. The phylogenetic signal was calculated for each measure of DNA content, and phylogenetic canonical correlation analysis (PCCA) explored how the variation in genome size and EI was correlated with 18 morphological and ecological traits. Phylogenetic signal (λ) was strongest for EI in all tissues, and λ was stronger for the 2C-value than the 1Cx-value. PCCA revealed that EI was correlated with pollen length, stem height, seed mass, dispersal mechanism, arbuscular mycorrhizal association, life history and flowering time, and EI and genome size were both correlated with stem height and life history. PCCA provided an effective way to explore multiple factors of DNA content variation and phenotypic traits in a phylogenetic context. Traits that were correlated significantly with DNA content were linked to plant competitive ability.


Assuntos
Tamanho do Genoma , Genoma de Planta , Magnoliopsida/anatomia & histologia , Magnoliopsida/genética , Filogenia , Flores/genética , Magnoliopsida/microbiologia , Magnoliopsida/fisiologia , Análise Multivariada , Micorrizas , Fenótipo , Folhas de Planta/genética , Raízes de Plantas/genética , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Pólen/anatomia & histologia , Pólen/genética , Poliploidia , Sementes/anatomia & histologia , Sementes/genética
9.
Chromosome Res ; 19(6): 763-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21847691

RESUMO

Less than 1% of known monilophytes and lycophytes have a genome size estimate, and substantially less is known about the presence and prevalence of endopolyploid nuclei in these groups. Thirty-one monilophyte species (including three horsetails) and six lycophyte species were collected in Ontario, Canada. Using flow cytometry, genome size and degree of endopolyploidy were estimated for 37 species. Across the five orders covered, 1Cx-values averaged 4.2 pg in the Lycopodiales, 18.1 pg for the Equisetales, 5.06 pg for a single representative of the Ophioglossales, 14.3 pg for the Osmundales, and 7.06 pg for the Polypodiales. There was no indication of endoreduplication in any of the leaf, stem, or root tissue analyzed. This information is essential to our understanding of DNA content evolution in land plants.


Assuntos
DNA de Plantas/genética , Tamanho do Genoma , Genoma de Planta , Equisetum/genética , Evolução Molecular , Gleiquênias/genética , Citometria de Fluxo , Lycopodium/genética , Ploidias
10.
Chromosome Res ; 19(6): 825-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21870188

RESUMO

Flow cytometry has become the dominant method for estimating nuclear DNA content in plants, either for ploidy determination or quantification of absolute genome size. Current best practices for flow cytometry involve the analysis of fresh tissue, however, this imposes significant limitations on the geographic scope and taxonomic diversity of plants that can be included in large-scale genome size studies. Dried tissue has been used increasingly in recent years, but largely in the context of ploidy analysis. Here we test rapid tissue drying with silica gel as a method for use in genome size studies, potentially enabling broader geographic sampling of plants when fresh tissue collection is not feasible. Our results indicate that rapid drying introduces comparatively minor error (<10%), which is similar to the error introduced by other common methodological variations such as instrument. Additionally, the relative effect of drying on genome size and data quality varied between species and buffers. Tissue desiccation provides a promising approach for expanding our knowledge of plant genome size diversity.


Assuntos
Dessecação/métodos , Tamanho do Genoma , Genoma de Planta , DNA de Plantas/genética , Citometria de Fluxo/métodos , Plantas/genética , Ploidias , Reprodutibilidade dos Testes , Sílica Gel
11.
Cytometry A ; 77(8): 725-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20653012

RESUMO

Flow cytometry (FCM) is commonly used to determine plant genome size estimates. Methodology has improved and changed during the past three decades, and researchers are encouraged to optimize protocols for their specific application. However, this step is typically omitted or undescribed in the current plant genome size literature, and this omission could have serious consequences for the genome size estimates obtained. Using four bryophyte species (Brachythecium velutinum, Fissidens taxifolius, Hedwigia ciliata, and Thuidium minutulum), three methodological approaches to the use of FCM in plant genome size estimation were tested. These included nine different buffers (Baranyi's, de Laat's, Galbraith's, General Purpose, LB01, MgSO(4), Otto's, Tris.MgCl(2), and Woody Plant), seven propidium iodide (PI) staining periods (5, 10, 15, 20, 45, 60, and 120 min), and six PI concentrations (10, 25, 50, 100, 150, and 200 microg ml(-1)). Buffer, staining period and staining concentration all had a statistically significant effect (P = 0.05) on the genome size estimates obtained for all four species. Buffer choice and PI concentration had the greatest effect, altering the 1C-values by as much as 8% and 14%, respectively. As well, the quality of the data varied with the different methodology used. Using the methodology determined to be the most accurate in this study (LB01 buffer and PI staining for 20 min at 150 microg ml(-1)), three new genome size estimates were obtained: B. velutinum: 0.46 pg, H. ciliata: 0.30 pg, and T. minutulum: 0.46 pg. While the peak quality of flow cytometry histograms is important, researchers must consider that changes in methodology can also affect the relative peak positions and therefore the genome size estimates obtained for plants using FCM.


Assuntos
Briófitas/genética , Citometria de Fluxo/métodos , Genoma de Planta/genética , Soluções Tampão , Propídio/metabolismo , Coloração e Rotulagem
12.
FEMS Microbiol Ecol ; 88(2): 333-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24527842

RESUMO

Agroecosystems are dynamic systems that experience frequent chemical inputs and changes in plant cover. The objective of this study was to test whether abiotic (soil chemical properties and climate) and biotic (plant host identity) factors influence the spatial and temporal structuring of arbuscular mycorrhizal fungal (AMF) communities in a semi-arid prairie agroecosystem. 454 GS FLX+ high-throughput sequencing technology was successfully utilized to characterize the AMF communities based on long reads (mean length: 751.7 bp) and generated high-resolution data with excellent taxonomic coverage. The composition of the AMF community colonizing roots of the three crops (pea, lentil, and wheat) significantly differed, but plant host identity had a minimal effect on the composition of the AMF community in the soil. We observed a temporal shift in the composition of AMF communities in the roots and surrounding soil of the crops during the growing season. This temporal shift was particularly evident in the root-associated AMF community and was correlated with soil phosphate flux and climatic variables. In contrast, the spatial structuring of the AMF community in the site was correlated with soil pH and electrical conductivity. Individual AMF taxa were significantly correlated with pH, electrical conductivity, and phosphate flux, and these relationships were phylogenetically conserved at the genus level within the Glomeromycota.


Assuntos
Produtos Agrícolas , Ecossistema , Micorrizas/classificação , Clima , Glomeromycota/classificação , Glomeromycota/genética , Glomeromycota/isolamento & purificação , Micorrizas/genética , Micorrizas/isolamento & purificação , Filogenia , Solo/química , Microbiologia do Solo
13.
Ecol Evol ; 3(6): 1427-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23789056

RESUMO

The pathway and frequency of species' introductions can affect the extent, impact, and management of biological invasions. Here, we examine the pathway of introduction of the aquatic plant Cabomba caroliniana (fanwort) into Canada and the northern United States using plastid DNA sequence (intergenic spacers atpF-atpH, trnH-psbA, and trnL-trnF) and DNA content analyses. We test the hypothesis that the spread of fanwort is a result of commercial trade by comparing a Canadian population (Kasshabog Lake, ON) to native populations from southern U.S., introduced populations in northern U.S., and plants from commercial retailers. Thirteen plastid haplotypes were identified throughout North America, including one dominant haplotype, which was present in all C. caroliniana populations. Several rare haplotypes were used to infer shared colonization history. In particular, the Canadian population shared two rare alleles with a population from Massachusetts, suggesting range expansion of C. caroliniana from the northern U.S. However, the possibility of a commercial introduction cannot be excluded, as common alleles were shared between the Canadian population and both commercial and southern U.S. sources. Variation in C. caroliniana genome size was bimodal and populations were classified into "high" and "low" categories. The Canadian population had DNA contents similar to several northern U.S. populations (low DNA content). This may provide additional support for range expansion from these introduced populations rather than from commercial sources or populations in the southern U.S., which had high DNA content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA