Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5480-5492, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353430

RESUMO

The premise of most studies on the homogeneous electrocatalytic CO2 reduction reaction (CO2RR) is a good understanding of the reaction mechanisms. Yet, analyzing the reaction intermediates formed at the working electrode is challenging and not always attainable. Here, we present a new, general approach to studying the reaction intermediates applied for CO2RR catalyzed by a series of cobalt complexes. The cobalt complexes were based on the TPA-ligands (TPA = tris(2-pyridylmethyl)amine) modified by amino groups in the secondary coordination sphere. By combining the electrochemical experiments, electrochemistry-coupled electrospray ionization mass spectrometry, with density functional theory (DFT) calculations, we identify and spectroscopically characterize the key reaction intermediates in the CO2RR and the competing hydrogen-evolution reaction (HER). Additionally, the experiments revealed the rarely reported in situ changes in the secondary coordination sphere of the cobalt complexes by the CO2-initiated transformation of the amino substituents to carbamates. This launched an even faster alternative HER pathway. The interplay of three catalytic cycles, as derived from the experiments and supported by the DFT calculations, explains the trends that cobalt complexes exhibit during the CO2RR and HER. Additionally, this study demonstrates the need for a molecular perspective in the electrocatalytic activation of small molecules efficiently obtained by the EC-ESI-MS technique.

2.
Inorg Chem ; 62(4): 1728-1734, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36657013

RESUMO

Cobalt(III)peroxo complexes serve as model metal complexes mediating oxygen activation. We report a systematic study of the effect of hydrogen bonding on the O2 binding energy and the O-O bond activation within the cobalt(III)peroxo complexes. To this end, we prepared a series of tris(pyridin-2-ylmethyl)amine-based cobalt(III)peroxo complexes having either none, one, two, or three amino groups in the secondary coordination sphere. The hydrogen bonding between the amino group(s) and the peroxo ligand was investigated within the isolated complexes in the gas phase using helium tagging infrared photodissociation spectroscopy, energy-resolved collision-induced dissociation experiments, and density functional theory. The results show that the hydrogen bonding stabilizes the cobalt(III)peroxo core, but the effect is only 10-20 kJ mol-1. Introducing the first amino group to the secondary coordination sphere has the largest stabilization effect; more amino groups do not change the results significantly. The amino group can transfer a hydrogen atom to the peroxo ligands, which results in the O-O bond cleavage. This process is thermodynamically favored over the O2 elimination but entropically disfavored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA